ZnO 나노선 - Au 나노입자 하이브리드 메모리 소자

A ZnO nanowire - Au nanoparticle hybrid memory device

  • 발행 : 2007.06.21

초록

Nanowire-based field-effect transistors (FETs) decorated with nanoparticles have been greatly paid attention as nonvolatile memory devices of next generation due to their excellent transportation ability of charge carriers in the channel and outstanding capability of charge trapping in the floating gate. In this work, top-gate single ZnO nanowire-based FETs with and without Au nanoparticles were fabricated and their memory effects were characterized. Using thermal evaporation and rapid thermal annealing processes, Au nanoparticles were formed on an $Al_2O_3$ layer which was semi cylindrically coated on a single ZnO nanowire. The family of $I_{DS}-V_{GS}$ curves for the double sweep of the gate voltage at $V_{DS}$ = 1 V was obtained. The device decorated with nanoparticles shows giant hysterisis loops with ${\Delta}V_{th}$ = 2 V, indicating a significant charge storage effect. Note that the hysterisis loops are clockwise which result from the tunneling of the charge carriers from the nanowire into the nanoparticles. On the other hand, the device without nanoparticles shows a negligible countclockwise hysterisis loop which reveals that the influence of oxide trap charges or mobile ions is negligible. Therefore, the charge storage effect mainly comes from the nanoparticles decorated on the nanowire, which obviously demonstrates that the top-gate single ZnO nanowire-based FETs decorated with Au nanoparticles are the good candidate for the application in the nonvolatile memory devices of next generation.

키워드