• 제목/요약/키워드: ~biodiesel

검색결과 567건 처리시간 0.025초

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • 농업과학연구
    • /
    • 제46권4호
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Non-edible Vegetable Oils for Alternative Fuel in Compression Ignition Engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제14권2호
    • /
    • pp.49-58
    • /
    • 2009
  • Non-edible vegetable oils instead of edible vegetable oils as a substitute for diesel fuel are getting a renewed attention because of global reduction of green house gases and concerns for long-term food and energy security. Out of various non-edible vegetable oils, karanja, mahua, linseed, rubber seed and cotton seed oils are selected in this study. A brief review of recent works related to the application of the above five vegetable oils and its derivatives in CI engines is presented. The production technologies of biodiesel based on non-edible vegetable oils are introduced. Problems in vegetable oil or biodiesel fuelled CI engine are included. In addition, future works related to spray characteristics of non-edible vegetable oil or biodiesel from it are discussed. The biodiesel fuel, irrespective of the feedstock used, results in a decrease in the emission of hydrocardon (HC), carbon monoxide (CO), particulate matter (PM) and sulphur dioxide ($SO_2$). It is also said to be carbon neutral as it contributes no net carbon dioxide to the atmosphere. Only oxides of nitrogen (NOx) are reported to increase which is due to oxygen content in the biodiesel fuel. The systematic assessment of spray char-acteristics of neat vegetable oils and its blends, neat biodiesel and its blends f3r use as diesel engine fuels is required.

  • PDF

Optimization of the Process for Biodiesel Production Using a Mixture of Immobilized Rhizopus oryzae and Candida rugosa Lipases

  • Lee, Jong-Ho;Lee, Dong-Hwan;Lim, Jung-Soo;Um, Byung-Hwan;Park, Chul-Hwan;Kang, Seong-Woo;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1927-1931
    • /
    • 2008
  • In this study, the enzymatic process for biodiesel production was optimized using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. The optimal temperature and agitation speed for biodiesel production were $45^{\circ}C$ and 300 rpm, respectively. The optimal ratio of R. oryzae and C. rugosa lipases in the mixture was 3:1 (w:w). When 3 mmol of methanol was the initial reaction medium and 3 mmol of methanol was added every 1.5 h during biodiesel production, biodiesel conversion was over 98% at 4 h. In addition, when the immobilized lipase mixture was reused, biodiesel conversion exceeded 80% after 5 reuses.

가시화 엔진을 이용한 직접 분사식 압축착화 디젤엔진에서 폐식용유 바이오디젤과 디젤의 분무 및 화염 특성 비교 (Spray and Flame Characteristics of Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Diesel Engine Using In-cylinder Visualization)

  • 황준식;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.105-113
    • /
    • 2014
  • Spray and combustion process with waste cooking oil (WCO) biodiesel and commercial diesel were analyzed in an optically-accessible single-cylinder compression ignition diesel engine equipped with a high pressure common-rail injection system. Direct imaging method was applied to investigate spray and combustion characteristics. From the mie-scattering results, it was verified that WCO biodiesel had a longer injection delay compared to diesel. Spray tip penetration length of WCO biodiesel was longer and spray angle was narrower than those of diesel due to poor atomization characteristics. In terms of combustion, WCO biodiesel showed later start of combustion, while flame was vanished more rapidly. Analysis of flame luminosity showed that WCO biodiesel combustion had lower intensity and lasted for shorter duration.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

Fabrication of a solid catalyst using coal fly ash and its utilization for producing biodiesel

  • Go, Young Wook;Yeom, Sung Ho
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.324-330
    • /
    • 2019
  • To recycle raw fly ash (RFA), a waste from thermal power plants, it was used to prepare solid catalysts which have many advantages compared with homogenous catalysts. When biodiesel was produced from soybean oil using RFA, only 1.2% of biodiesel conversion was obtained. A metal hydroxide, NaOH, KOH or $Ca(OH)_2$, was mixed with the acid-treated fly ash (ATFA), and the mixture was calcined at $700^{\circ}C$ for 3 h to prepare the solid catalyst. The solid catalyst prepared by mixing ATFA with NaOH, designated as SC-Na, showed a better performance than those prepared by mixing ATFA with KOH or $Ca(OH)_2$, respectively. The optimal mass ratio of ATFA with NaOH was 1:3, at which the proportion of $Na_2O$ increased to 60.2% in SC-Na, and 97.8% of biodiesel conversion was achieved under optimal reaction conditions (2 w% SC-Na relative to oil and 5 mL-methanol/g-oil at $50^{\circ}C$ for 4 h). Finally, a batch operation was repeatedly carried out to test the feasibility of reusing the solid catalyst, and more than 96% biodiesel conversion was stably achieved for the third round of operations. This study shows that RFA was successfully recycled to solid catalysts through a simple preparation method, and the solid catalyst was reused for the production of biodiesel with high conversion.

요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선 (Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME)

  • 이영화;김광수;장영석;신정아;이기택;최인후
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.113-119
    • /
    • 2014
  • 바이오디젤의 저온유동성과 산화안정성은 주로 녹는점이 높은 포화 및 불포화 지방산 메틸에스테르의 함량에 의해 좌우된다. 본 연구는 동물성 유지인 우지 유래 바이오디젤에 요소를 첨가하여 포화지방산 메틸에스테르 함량을 저감시켜 동물성 바이오디젤의 저온유동성 개선과 포화지방산 메틸에스테르 함량이 저감된 동물성 바이오디젤을 식물성 바이오디젤에 혼합함으로써 식물성 바이오디젤(유채유, 폐식용유, 대두유 및 동백유)의 저온유동성을 개선하기 위해 수행 되었다. 연구결과, 동물성 바이오디젤의 포화도 저감을 통해 저온필터막힘점을 최대 $-15^{\circ}C$까지 낮추었고, 포화도가 저감된 동물성 바이오디젤을 식물성 바이오디젤과 혼합함으로서 식물성 바이오디젤의 저온필터막힘점을 $-10{\sim}-18^{\circ}C$까지 낮출 수 있었다. 본 연구를 통해 동 식물성 유지 유래 바이오디젤의 저온특성을 개선함으로써 국내 겨울철 환경조건에서 연료유로 적용 가능성을 증대할 것으로 기대한다.

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.

Investigating production parameters and impacts of potential emissions from soybean biodiesel stored under different conditions

  • Ayoola, Ayodeji Ayodele;Adeniyi, David Olalekan;Sanni, Samuel Eshorame;Osakwe, Kamsiyonna Ikenna;Jato, Jennifer Doom
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.54-61
    • /
    • 2018
  • Biodiesel production parameters and the impact analysis of the potential emissions from both soybean biodiesel and washing water stored in three different environmental conditions were investigated. The effects of the reaction temperature, methanol/oil mole ratio and catalyst concentration on biodiesel yield were considered. And the results showed optimum biodiesel yield of 99% obtained at $54^{\circ}C$, 7 methanol/oil mole ratio and 0.4 wt/wt % catalyst concentration. The potential emissions from both the biodiesel produced and washing water stored (for six weeks) in refrigerator (${\leq}10^{\circ}C$), vacuum (50 kPa) and direct exposure to atmosphere were identified and quantified. Impact analysis of the emissions involved their categorization into: terrestrial acidification, freshwater eutrophication, human toxicity, terrestrial ecotoxicity, climate change and freshwater ecotoxicity. Freshwater ecotoxicity category had the most pronounced negative impact of the potential emissions with $5.237710^{-2}kg\;1,4-DB\;eq$. emissions in Atmosphere, $4.702610^{-2}kg\;1,4-DB\;eq$. emissions in Refrigerator and $3.966110^{-2}kg\;1,4-DB\;eq$. emissions in Vacuum. Climate change had the least effect of the emissions with $6.214106^{-6}kg\;CO_2\;eq$. in Atmosphere, $3.9310^{-6}kg\;CO_2\;eq$. in Refrigerator and $1.6710^{-6}kg\;CO_2\;eq$. in Vacuum. The study showed that the order of preference of the storage environments of biodiesel is vacuum environment, refrigerated condition and exposure to atmosphere.

4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성 (Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine)

  • 정규수;이동곤;연인모;노현구;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.