DOI QR코드

DOI QR Code

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME

요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선

  • Lee, Yong-Hwa (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Kwang-Soo (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Jang, Young-Seok (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Jung-Ah (Chungnam National University, Department of Food Science and Technology) ;
  • Lee, Ki-Teak (Chungnam National University, Department of Food Science and Technology) ;
  • Choi, In-Hu (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration)
  • 이영화 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 김광수 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 장영석 (농촌진흥청 국립식량과학원 바이오에너지작물센터) ;
  • 신정아 (충남대학교 식품공학과) ;
  • 이기택 (충남대학교 식품공학과) ;
  • 최인후 (농촌진흥청 국립식량과학원 바이오에너지작물센터)
  • Received : 2014.02.20
  • Accepted : 2014.03.06
  • Published : 2014.03.30

Abstract

The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

바이오디젤의 저온유동성과 산화안정성은 주로 녹는점이 높은 포화 및 불포화 지방산 메틸에스테르의 함량에 의해 좌우된다. 본 연구는 동물성 유지인 우지 유래 바이오디젤에 요소를 첨가하여 포화지방산 메틸에스테르 함량을 저감시켜 동물성 바이오디젤의 저온유동성 개선과 포화지방산 메틸에스테르 함량이 저감된 동물성 바이오디젤을 식물성 바이오디젤에 혼합함으로써 식물성 바이오디젤(유채유, 폐식용유, 대두유 및 동백유)의 저온유동성을 개선하기 위해 수행 되었다. 연구결과, 동물성 바이오디젤의 포화도 저감을 통해 저온필터막힘점을 최대 $-15^{\circ}C$까지 낮추었고, 포화도가 저감된 동물성 바이오디젤을 식물성 바이오디젤과 혼합함으로서 식물성 바이오디젤의 저온필터막힘점을 $-10{\sim}-18^{\circ}C$까지 낮출 수 있었다. 본 연구를 통해 동 식물성 유지 유래 바이오디젤의 저온특성을 개선함으로써 국내 겨울철 환경조건에서 연료유로 적용 가능성을 증대할 것으로 기대한다.

Keywords

References

  1. Y. H. Lee, K. S. Kim, Y. S. Jang, H. J. Cho, S. S. Nam, and S. J. Suh, Breeding of F1 hybrid Rapeseed and the Cultivation for Biodiesel Production in Korea, Korean J. Intl. Agri., 22(4), 341 (2010).
  2. T. S. Lee, Y. H. Lee, K. S. Kim, W. Kim, K. S. Kim, Y. S. Jang, and K. G. Park, Yield and Characterization of Various Biodiesel from Vegetable Oils and Animal Fats, New & Renewable Energy, 8(4), 30 (2012).
  3. D. Bajpai, and V. K. Tyagi, "Biodiesel: Source, Production, Composition, Properties and Its Benefits", Journal of Oleo Science, 55(10), 487 (2006). https://doi.org/10.5650/jos.55.487
  4. Y. K. Lim, D. K. Kim, and E. S. Yim, Synthesis of Biodiesel from Vegetable oil and Their Characteristics in Low Temperature, ournal of Chem. Eng., 20(2), 208 (2009).
  5. B. H. Jeong, K. S. Lee, Y. D. Kim, and C. H. Shin, Low Temperature Flow Properites of Palm Biodiesel, Journal of Annual Fall Meeting of The Korean Society for New & Renewable Energy, 602 (2007).
  6. J. -K. Kim, C. H. Jeon, E. S. Yim and C. S. Jung, Fuel Properties of Various Biodiesels Derived Vegetable Oil, J. Kor. Oil Chem. Soc., 30(1), 35 (2013).
  7. J. -K. Kim, E. S. Yim, C. H. Jeon, C. S. Jung and B. H. Han, Cold Performance of Various Biodiesel Fuel Blends at Low Temperature, Int. J. Automotive Technology, 13, 293 (2012). https://doi.org/10.1007/s12239-012-0027-2
  8. Y. K. Lim, C. H. Lee, C. S. Jung, and E. S. Yim, Study of Fuel Properties for Biodiesel Derived from Duck's Oil, Journal of Chem. Eng., 21(60), 653 (2010).
  9. C. Echim, J. Maes, and W. D. Greyt, Improvement of cold filter plugging point of biodiesel from alternative feedstocks, Journal of Fuel., 93, 642 (2012). https://doi.org/10.1016/j.fuel.2011.11.036
  10. B. Chen, Y. Sun, J. Fang, J. Wang, and J. Wu, Effect of cold flow improvers on flow properties of soybean biodiesel, Journal of Science Direct, 34, 1309 (2010).
  11. P. Angel, C. Abraham, M. F. Carmen, J. R. Maria, and R. Lourdes, Winterization of peanut biodiesel to improve the cold flow properties, Journal of Bioresource Technology, 101, 7375 (2010). https://doi.org/10.1016/j.biortech.2010.04.063
  12. Y. H. Lee, J. A. Shin, Z. Hua, K. T. Lee, K. S. Kim, Y. S. Jang, and K. G. Park, Improvement of Low Temperature Property of Biodiesel from Palm Oil and Beef Tallow Via Urea Complexation, New & Renewable Energy, 8(4), 38 (2012).
  13. D. G. Hayes, Y. C. Bengtsson, J. M. Alstine, and F. Setterwall, Urea Complexation for the Rapid, Ecologically Responsible Fractionation of Fatty Acids from Seed Oil, JAOCS, 75(10), 1403 (1998)
  14. A. Kleinova, J. Paligova, M. Vrbova, J. Mikulec and J. Cvengros, Cold Flow Properties OF Fatty Esters, Process Safety and Environmental Protection, 85(B5), 390 (2007). https://doi.org/10.1205/psep07009

Cited by

  1. High-yield methods for purification of α-linolenic acid from Perilla frutescens var. japonica oil vol.59, pp.1, 2014, https://doi.org/10.1007/s13765-015-0136-5