• Title/Summary/Keyword: Cold Filter Plugging Point (CFPP)

Search Result 11, Processing Time 0.026 seconds

A Study on the cold weather performance for diesel vehicle as fuel properties (연료물성에 따른 경유 차량의 저온성능 영향 연구)

  • Jang, Eun-Jung;Kim, Sung-Woo;Min, Kyung-Il;Park, Cheon-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.144-153
    • /
    • 2015
  • At low temperature, Wax build-up and settling can affect adversely the cold weather performance of the diesel vehicle. In this study, we test the cold properties of diesel by blending ratio of biodiesel, kerosene and WAFI. Also, we test the cold weather performance for diesel vehicle by fuel cold properties. Cold properties of diesel are improved by adding the WAFI, kerosene and get worse by adding the biodiesel. WAFI is effective to improve a cold filter plugging point(CFPP) and Kerosene is effective to improve a cloud point(CP). CFPP and pour point(PP) are related to cold weather performance of diesel vehicle but CP is unrelated. CFPP indicate a limit temperature of vehicle driving possibility.

Low Temperature Flow Properties of Palm Biodiesel (팜 바이오디젤의 저온유동성)

  • Jeong, Byung-Hwan;Lee, Kwang-Seok;Kim, Yong-Dai;Shin, Chae-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.602-605
    • /
    • 2007
  • Soybean and rape seed are common feedstocks for biodiesel product ion in USA and Europe, respectively. On the other hand, South Eastern countries like Malaysia and Indonesia have surplus palm crops. However due to substantial amount of saturated fats in palm, the palm biodiesel has poor low temperature properties. To improve the low temperature flow properties as biodiesel, the dependence of the cold filter plugging point (CFPP) on the fatty acid compositions was examined. Two different kinds of biodiesels, palm and soybean biodiesels, were blended with the different volume ratios. And the low temperature flow properties of 0.5%, 1%, and 5% biodiesel in diesel blend fuels was tested. The decrease of CFPP was not observed for BD1 with Palm BD. Also, WDI test didn't exceed in the range of 4oC by the mixing of Palm BD upto 5% in commercial diesels.

  • PDF

Improvement of Low Temperature Property of Biodiesel from Palm Oil and Beef Tallow Via Urea Complexation (요소 착물형성에 의한 포화지방산 고함유 팜유 및 우지 유래 바이오디젤의 저온유동성 개선효과 연구)

  • Lee, Yong-Hwa;Shin, Jung-Ah;Zhang, Hua;Lee, Ki-Teak;Kim, Kwang-Soo;Jang, Young-Seok;Park, Kwang-Geun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.38-43
    • /
    • 2012
  • Biodiesel is non-petroleum based fuel produced from vegetable oils or animal fats through transesterification. The compositions of saturated and unsaturated fatty acids in the feedstocks are important factors for biodiesel quality in terms of low-temperature fluidity and oxidative stability. The goal of this study is to improve the cold flow property of biodiesel from vegetable and animal origin containing highly saturated methyl esters (approx. 50%). In this purpose poly-saturated methyl esters in palm and tallow biodiesel were removed via urea-based fractionation and then the recovered fractions (enriched unsaturated fatty acid methyl esters) were supplemented with cold flow improvers. The highest concentration of unsaturated fatty acid methyl esters (93.8%) was obtained using a urea/fatty acid ratio of 3:1 at the crystallization temperature of $0^{\circ}C$ for 17 hours in incubation, with recovery of 71% and the addition of cold flow improver (Flozol$^{(R)}$ 515, 3,000 ppm) to the enriched poly-unsaturated fatty acid methyl esters reduced the CFPP(cold filter plugging point) of palm biodiesel from $12^{\circ}C$ to $-42^{\circ}C$. In tallow biodiesel both the enrichment of unsaturated fatty acid methyl esters (93.71%) and the addition of cold flow improver (Infineum R408, 3,000ppm) reduced the CFPP from $10^{\circ}C$ to $-32^{\circ}C$.

Synthesis of Biodiesel from Vegetable Oil and Their Characteristics in Low Temperature (식물성 오일로부터 바이오디젤의 합성과 저온특성)

  • Lim, Young-Kwan;Kim, DongKil;Yim, Eui Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.208-212
    • /
    • 2009
  • Biodiesel come from animal fat and vegetable oil by methanolysis was known for eco-friendly fuel for the alternative petrodiesel. But, various kinds of biodiesel need to analyze the cold characteristic due to poor fuel properties than petrodiesel in a cold condition. In this paper, 12 types of biodiesel were synthesized in 86~96% yields from 12 kinds of vegetable oil by transesterification. These synthesized biodiesels were analyzed in terms of the cold characteristics like cloud point, pour point, and cold filter plugging point (CFPP). The biodiesel comes from perilla oil which has rich olefin showed the excellent fuel characteristics in a low temperature.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

Improvement of Low Temperature Fuel Characteristics by Pour Point Depressant (유동점 강하제에 의한 바이오디젤 저온특성 향상)

  • Lim, Young-Kwan;Lee, Joung-Min;Jeong, Choong-Sub;Kim, Jong-Ryeol;Yim, Eui-Soon
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2011
  • The low temperature characteristics of automotive diesel have been legally regulated due to the fact that solid particle in diesel at low temperature can cause severe problems in the vehicle. The biodiesel is well known for eco-friendly fuel, which is one of the most popular alternative petrodiesel, but it is easy to solidified at low temperature than petrodiesel at low temperature. For that reason, in this study, we investigated the low temperature fuel characteristics of diesel-biodiesel blends which were prepared to mix 6 different kinds of biodiesel to winter diesel fuel, respectively. Also, we confirmed to improve low temperature fuel characteristics by pour point depressant.

Mixotrophic Cultivation of Marine Alga Tetraselmis sp. Using Glycerol and Its Effects on the Characteristics of Produced Biodiesel

  • Dang, Nhat Minh;Kim, Garam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.222-228
    • /
    • 2022
  • As a possible feedstock for biodiesel, the marine green alga Tetraselmis sp. was cultivated under different conditions of phototrophic, mixotrophic and heterotrophic cultures. Glycerol, a byproduct from biodiesel production process, was used as the carbon source of mixotrophic and heterotrophic culture. The effects of glycerol supply and nitrate-repletion were compared for different trophic conditions. Mixotrophic cultivation exhibited higher biomass productivity than that of phototrophic and heterotrophic cultivation. Maximum lipid productivity of 55.5 mg L-1 d-1 was obtained in the mixotrophic culture with 5 g L-1 of glycerol and 8.8 mM of nitrate due to the enhancement of both biomass and lipid accumulation. The major fatty acid methyl esters (FAME) in the produced biodiesel were palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). The degree of unsaturation was affected by different culture conditions. The biodiesel properties predicted by correlation equations based on the FAME profiles mostly complied with the specifications from the US, Europe and Korea, with the exception of the cold-filter plugging point (CFPP) criterion of Korea.

Analysis of Fatty Acid Composition and Methyl-ester Properties of Camellia and Tea Oil (동백나무와 차나무 기름의 지방산 조성 및 메틸에스테르 특성 분석)

  • Kim, Kwang-Soo;Lee, Yong-Hwa;Jang, Young-Seok;Choi, In-Hu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • To secure raw materials of biodiesel production, the possibility of camellia (C. japonica L.) and tea (C. sinensis L.) seed oil was studied to produce biodiesel. In this research, crude oil contents and fatty acid compositions of seeds were analyzed by Solxlet and Gas chromatography (GC). The oil contents in the seeds of camellia were 69.8%~73.8%, and tea were 26.3%~29.4%. Among the fatty acids of camellia and tea oil, oleic acid was dominant. The unsaturated fatty acids accounted for 88.4% and 80.2% of the whole fatty acids of camellia and tea seed oil. Total seed oil content and fatty acid composition of tea seed were influenced by collecting date. Across maturation period, oil content of tea seed averaged 18.3% on $6^{th}$ September increasing to 27.9% by $11^{th}$ October. For largest seed yield and oil content, the optimum time to harvest tea is in middle october, and camellia is late september and thereafter. The extraction efficiency of oil from seeds by extraction methods was determined. Biodiesel were synthesized in 92.1~92.8% yields from camellia and tea oils by transesterification. The biodiesel was characterized by its physical and fuel properties including oxidation stability, iodine value and cold filter plugging point (CFPP). Oxidation stability of camellia was 8.6~8.8 hours and tea was 2.9~3.6 at $110^{\circ}C$. Camellia oil had considerably better oxidation stability and CFPP than tea oil.

Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production (Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오디젤 생산)

  • Choi, Jong-Doo;Kim, Deog-Keun;Park, Ji-Yeon;Rhee, Young-Woo;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.194-199
    • /
    • 2008
  • In this study, the effective method to esterify the free fatty acids in jatropha oil was examined. Compared to other plant oils, the acid value of jatropha oil was remarkably high, 11.5 mgKOH/g. So direct transesterification by a base catalyst was not suitable for the oil. After the free fatty acids were esterified with methanol, jatropha oil was transesterified. The activities of four solid acid catalysts were tested and Amberlyst-15 showed the best activity for the esterification. After constructing the experiment matrix based on RSM and analyzing the statistical data, the optimal esterification conditions were determined to be 6.79% of methanol and 17.14% of Amberlyst-15. After the pretreatment, jatropha biodiesel was produced by the transesterification using KOH in a pressurized batch reactor. Jatropha biodiesel produced could meet the major specifications of Korean biodiesel standards; 97.35% of FAME, 8.17 h of oxidation stability, 0.125% of total glycerol and $0^{\circ}C$ of CFPP.