• Title/Summary/Keyword: zooplankton net

Search Result 38, Processing Time 0.03 seconds

Zooplankton Community and Distributions of Copepods in Relation to Eutrophic Evaluation in Chinhae Bay (진해만 수질 환경과 동물플랑크톤 군집 및 요각류 분포 특성)

  • KANG Young-Shil;PARK Joo-Suck;LEE Sam-Seuk;KIM Hak-Gyoon;LEE Phil-Yong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.415-430
    • /
    • 1996
  • Spatio-temporal variations in zooplankton community and ropepod indicator species were investigated along with the interaction between zooplankton distribution and environmental factors in Chinhae Bay. Zooplankton samples were monthly collected at 7 stations from February to September in 1993. A NORPAC net was vertically hauled from bottom to surface, At the same station, environmental factors such as temperature, salinity and COD (chemical oxygen demand) were measured at two different water layers, surface and bottom. In August and September, salinity declined below 30.00‰ , while eutrophic parameters such as COD showed the higher concentrations than those in other months, with higher concentrations at inner bay stations. Salinities were, however, higher at bay mouth areas. These distributional patterns were believed to be caused by input and dispersion of organic matters from nearby land. Zooplankton communities were composed of 7~14. Of these, Noctiluca scintillans was predominant and occupied 90.6‰ of total zooplankton abundance. Cladocera and Copepoda were secondly abundant taxa. Among 6 to 10 copepod species appeared, Acartia omorii and A. hudsonics were most common species during the survey months except March and September. Species diversities were greater, in general, at inner bay than outer bay. The lowest diversity index was observed in February, while the highest in July. Cluster analysis could divide the study area into 2 or 4 zones for each month. Zone 1, mouth area of the bay, was characterized by the influence of offshore waters. Zone II was mixing area. Zone III and IV seemed to be affected by nearby land.

  • PDF

Monthly Variations of Cirriped Larvae near Oryuk Islets off Busan, Korea (부산 인근 오륙도 주변에 출현하는 만각류 유생의 월별 출현 양상 변화)

  • Choi, Jungwha;Kang, Junghun;Park, Wongyu
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.2
    • /
    • pp.230-239
    • /
    • 2015
  • Monthly variations of cirriped larvae near Oryuk islets off Busan were investigated at four stations from January 2012 to January 2013. Zooplankton was vertically collected, using NORPAC net (mouth 45 cm, mesh $200{\mu}m$), from the surface to 1 m above the bottom. 12 species belong to five genera of 4 families were identified including one unidentified species. Cirriped larvae occupied small portion of total zooplankton, ranging 0.02 to 4.1% of total zooplankton densities. The densities varied monthly from $1inds.m^{-3}$ to $715.1inds.m^{-3}$, which was highest in September and lowest in February. Chthamalus challengeri, Balanus glanula, B. improbisus, B. nubilus and Octomeris sulcata were dominant species and accounted for 70.1% of total cirriped larvae. Larval densities of cirripeds between stations were not significantly different (F=0.237, p=0.870). The larval communities were grouped into two groups by cluster analysis. We discussed the distribution patterns of cirriped larvae in relation to oceanographic characteristics in the study area.

Quantitative Zooplankton Collection Methods for Various Freshwater Ecosystems and Their Applications (담수생태계 특성을 고려한 동물플랑크톤 정량 조사법의 비교와 활용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Jeong, Hyun-Gi;Go, Soon-Mi;La, Geung-Hwan;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.231-244
    • /
    • 2019
  • Zooplankton is essential biological assemblage in understanding the structure and function of aquatic ecosystems, since it plays as a linkage between primary producers and higher trophic level organisms such as fish. Although zooplankton has planktonic characteristics, the sampling and treatment methods for its community analyses are more complicated and variable compared with phytoplankton due to its high diversity in body size and species-specific depth selection behaviors. In the present paper, we reviewed representative classical methods for field sampling and treatments of freshwater zooplankton in relation with quantification of its community structure, and suggested appropriate methods depending on various research objectives.

Species Composition and Occurrence Patterns of Zooplankton in Gamag Bay (가막만에 출현하는 동물플랑크톤의 종조성과 계절별 출현 양상)

  • 서호영;이인태;윤양호;최상덕;이삼노;한명일;김병섭;강윤호;이우범
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • Zooplankton was sampled vertically with a Norpac net from Gamag Bay in April, July, September and December, 2001. Copepods were predominant in April and December, and cladocerans in July and Noctituca scintillans in September, respectively. There are high spatio-temporal fluctuations in the abundance of zooplankton with a range of 22-17,197 indiv.$m^3$. In the copepod community, neritic species, Eurytemora pacifica, Acartia omorii, Centropages abdominalis and Calanus sinicus were predominant in April ; Labidocera rotunda and A. erythraea in July; A. erythraea and Paracalanus parvus s. 1. in September; A. omorii and E. pacifica in December. However, oceanic species Eucalanus sp. and Neocalanus sp. were abundant in September. It indicates that although Gamag Bay is semi-closed, the distribution pattern of zooplankton is seasonally strongly affected by oceanic waters in addition to neritic ones.

ESTIMATION OF ZOOPLANKTION PRODUCTION IN THE SOUTH SEA OF KOREA (한국 남해의 동물성 플랑크톤 생산량 추정)

  • KIM Yong Sool
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.4
    • /
    • pp.245-249
    • /
    • 1976
  • The present paper deals with estimation of zooplankton production in the South Sea of Korea based on the plankton data of the Annual Report of Oceanographic Observations, Fisheries Research and Development Agency, Korea during the period of seven years from 1967 through 1973. Net zooplankton biomass of the layer tipper 150 meters is calculated with an average of $70.2\;mg/m^3$ and gross production in the region $59,800\;km^2$ are about $5.14\~10.27\times10^6\;tons/year$. Mean zooplankton productivity is estimated $86\~172\;tons/km^2/year$.

  • PDF

Seasonal Variation of Zooplankton Community in Gwangyang Bay (광양만 동물플랑크톤 군집의 계절 변화)

  • Jang, Min-Chul;Jang, Poong-Guk;Shin, Kyung-Soon;Park, Dong-Won;Jang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.22
    • /
    • pp.11-29
    • /
    • 2004
  • This study was conducted bimonthly from June 2001 to June 2003 to investigate the seasonal variation of the zooplankton community in Gwangyang Bay, Zooplankton were collected at 9 stations using a NORPAC net from surface layer. The zooplankton community consisted of 47 taxa and the mean abundance was 6,205 inds. $m^{-3}$ during the survey period. The maximum abundance was observed to be 20,060 inds. $m^{-3}$ in June 2002 and the minimum in August 2001 with 630 inds. $m^{-3}$. Copepods were the predominant constituent, wihich comprised 4.6~84.1% (mean 38.2%) of the total zooplankton abundance. Dominant species of copepods were Acartia omorii, Acartia erythraea, Centropages abdominalis, Paracalanus parvus. Paracalanus parvus dominated from June 2001 to December 2002. A red tide causative dinoflagellate, Noetiluca scintillans, dominated from June 2002 to February 2003, Acartia omorii and Centropages abdominalis dominated in winter and spring seasons. While, Acartia erythraea dominated in summer and fall seasons. In June and August, Cladocerans and Cirriped larvae dominated. The abundance of zooplankton according to the tidal cycle showed considerable fluctuations with a range of 2,768~15,856 inds. $m^{-3}$ $(\risingdotseq$ 5.7 times).

Long-term variation of zooplankton around Dokdo in the East Sea (독도 인근해역 동물플랑크톤 장기간 특성)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Kwon, Oh Youn;Cho, Kyuhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.422-430
    • /
    • 2016
  • We investigated the abundance and composition of the zooplankton community around Dokdo in the East Sea from 2006 to 2015. Zooplankton samples were collected in the surface mixed layer by vertical hauls using a standard type net at the monitoring stations. There were no clear long-term trends in the average temperature and salinity, but relatively low salinity was recorded in the summer of 2013 and 2015. The average abundances of zooplankton in the summer increased by two orders of magnitude from $317inds./m^3$ in 2008 to $10,242inds./m^3$ in 2015. This long-term increase was accompanied by a slight increase in the chlorophyll-a concentration and a decrease in the catch of potential crucial predators (anchovy, mackerel pike, squid, herring and horse mackerel) in the study area. The dominant zooplankton, accounting for most of the long-term increase, consisted of appendicularian (Oikopleura spp.), which showed a steady increase since 2012, summer species such as Noctiluca scintillans and the cladoceran Penilia avirostris, which showed an abrupt increase, and the copepod Paracalanus parvus s.l., which showed a rapid increase after its first occurrence in summer 2010. These results suggest that the long-term increase of zooplankton could be related to the increase in the concentration of prey and the decrease in the predation pressure of potential predators around Dokdo in the study area.

Environmental factors affecting neustonic zooplankton in the southwestern area of Korea in summer (여름 남해 서부 해역에 출현하는 수표성 동물플랑크톤에 미치는 환경요인)

  • Choi, Jang Han;Kim, Dae-Jin;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.461-475
    • /
    • 2020
  • This study was conducted in the southwestern area of Korea using a neuston net in September (14 stations) 2017 to understand the environmental factors affecting neustonic zooplankton. Temperature, salinity, chlorophyll a concentration, suspended solids, and microplastics were included as environmental factors. Based on the density of the copepods, the study area was divided into three regions: the Seomjin River water influence area, the frontal mixing area, and the warm water affected area (Jeju warm current and Tsushima warm current). In the latter two areas, the major species were Pontella chierchiae, Canthocalanus pauper, and Oncaea spp. Also, neustonic zooplankton showed a significant relationship between the density of phytoplankton and microplastics in the frontal mixing area, and temperature and suspended solids in the warm water affected area, respectively (p<0.05). This indicates that microplastics can affect the offshore zooplankton community.

Zooplankton and Neustonic Microplastics in the Surface Layer of Yeosu Coastal Areas (여수 연안 표층에 출현하는 동물플랑크톤과 미세플라스틱)

  • Kang, Hui Seung;Seo, Min Ho;Yang, Yun Seok;Park, Eun-Ok;Yoon, Yang Ho;Kim, Daejin;Jeong, Hyeon Gyeong;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • In planktonic ecosystems, the microplastics are considered as a potential food source for the zooplankton. To study a relationship between the zooplankton and the neustonic microplastics, a research experiment was carried out during May in the surface layers of the Yeosu coastal areas including Yeoja Bay, Gamak Bay, Yeosuhae Bay, and Botdol Sea. A neustonic zooplankton net (mesh size $300{\mu}m$; mouth area $30cm{\times}18cm$) was towed from the side of the ship in the event that it would not be affected by waves crashing by the ship at a speed of ca. 2.5 knots. All of the microplastic particles were separated from the zooplankton. The zooplankton and microplastics were appearing in a range of 61 to $763indiv.m^{-3}$ and 0.0047 to $0.3471particle\;m^{-2}$, respectively. It was noted that the Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, decapod larvae, and cirriped larvae were predominantly seen in the experiment. For verifying relationships between zooplankton and environmental factors in addition to microplastics, a model redundancy analysis (RDA) was performed. The zooplankton were divided into two groups on the basis of feeding types (i.e. particle feeders, and carnivores), and the associated zooplankton larvae were also separately considered. A review of the additional environmental factors such as water temperature, salinity, turbidity, chlorophyll-${\alpha}$ concentration, diatom density, and dinoflagellate density were also contained in the analysis. The results showed that a noted zooplankton abundance had no close relation with the occurring number of microplastic particles, but rather was significantly related with other noted environmental factors such as temperature, salinity, turbidity, and chlorophyll-${\alpha}$ concentration. This fact implies that most zooplankton can feed themselves as a unit, by selecting the most likely available nutritious foods, rather than microplastics under the circumstance of food-richness areas, such what food resources are available as in the location of coastal waters.

Zooplankton Abundance in Korean Waters (한국근해 동물성 부유생물의 주요군의 양적 분포)

  • Park, Joo-suck
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.33-45
    • /
    • 1973
  • Plankton samples used for the present study were collected by the NORPAC net during the CSK cruises in the Korean waters in March and August, 1967. Regional and seasonal variations in the zooplankton biomass (wet weight, mg/㎥) were noticed in the Korean waters. In March the highest biomass, 130mg/㎥ on the average, occurred in the southern part of Japan Sea, but the lowest biomass of less than 50mg/㎥ occurred in the Yellow Sea and the western sea of Cheju Island Contrally, in August, the average biomass of 120mg/㎥ was measured in the Yellow Sea, the western sea of Cheju Island and the coastal waters of southern Korea, while the biomass of Japan Sea was the lowest of the regions surveyed. In comparison with the zooplankton biomass, total number of zooplankton per cubic meter of water strained also showed regional and seasonal fluctuations. In general, variations in the number of zooplankton specimens follows the same trend as in the biomass. The largest number, up to 800mg/㎥ on the average, occurred in the southern part of Japan Sea in March and the lowest number, less than 200mg/㎥ occurred in the Yellow Sea and the western sea of Cheju Island. In August, as shown by the biomass fluctuations, the largest number of zooplankton 850mg/㎥ on the average occurred in the Yellow Sea, the western sea of Cheju Island and the coastal region of southern Korea. But the lowest number of less than 500mg/㎥ was found in the Japan Sea. Among the various groups of zooplankton examined, the following were dominant components of the zooplankton population: Copepoda, Chaetognatha, Siphonophora, Euphausiacea, Cladocera, Appendicularia, and Amphipoda. The zooplankton conposition was significantly differed between the Japan Sea and Yellow Sea. Copepods which usually occupied over 66% in the Japan Sea and thd Korean Strait samples occupied only 42% of the catches in August, while cladocerans and chaetognaths were relatively abundant, i. e., 15 and 18% of the total organisms. The most dominant species of copepods and chaetognaths were Paracalanus parvus, Oithona similis, Acartia clausi, Calanus helgolandicus, Sagitta enflata, S. bedoti, S. elegans and S. crassa.

  • PDF