• Title/Summary/Keyword: zirconia bonding

Search Result 88, Processing Time 0.031 seconds

Fabrication and characteristics of limit-current type oxygen sensor with monolith aperture structure (일체화된 Aperture 구조의 한계전류형 산소센서의 제작 및 특성)

  • Oh, Young-Jei;Lee, Deuk Yong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.273-280
    • /
    • 2008
  • Monolith aperture-type oxygen sensors with simple structure of YSZ(pin-hole)/Pt/ YSZ(solid electrolyte)/Pt were fabricated by co-firing technique. To enhance the yield of productivity, a couple of YSZ green sheets for diffused barrier and solid electrolyte were prepared by tape-casting and co-firing method. The limit current characteristics of the oxygen sensors were measured between 500 and $650^{\circ}C$ The heating temperature of $600^{\circ}C$ was optimum as a portable oxygen sensor in the range of oxygen concentration from 0 to 75 vol%. Linear proficiency of limit current behavior as a function of oxygen concentration was controlled by the variation of aperture dimension. The fabricated oxygen sensors showed the stable sensing output for 30 days. Gas leakage in bonding area due to warping, cracking and thermal cycling was not found in the period.

The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

  • Yavuz, Tevfik;Eraslan, Oguz
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • PURPOSE. To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS. 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with $60^{\circ}C$ heat-treatment), and G4 (silane alonethen dried with $100^{\circ}C$ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in $N/mm^2$). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin-ceramic interface. RESULTS. SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION. The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments.

Evaluation of the bond strength between aged composite cores and luting agent

  • Polat, Serdar;Cebe, Fatma;Tuncdemir, Aliriza;Ozturk, Caner;Usumez, Aslihan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS. Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to $55^{\circ}C$) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at ${\alpha}$=.05. RESULTS. Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between $7.07{\pm}2.11$ and $26.05{\pm}6.53$ N. The highest bond strength of $26.05{\pm}6.53$ N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION. Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success.

The effect of continuous application of MDP-containing primer and luting resin cement on bond strength to tribochemical silica-coated Y-TZP

  • Lim, Myung-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2018
  • Objectives: This study investigated the effect of continuous application of 10-methacryloyloxydecyldihydrogen phosphate (MDP)-containing primer and luting resin cement on bond strength to tribochemical silica-coated yttria-stabilized tetragonal zirconia polycrystal (Y-TZP). Materials and Methods: Forty bovine teeth and Y-TZP specimens were prepared. The dentin specimens were embedded in molds, with one side of the dentin exposed for cementation with the zirconia specimen. The Y-TZP specimen was prepared in the form of a cylinder with a diameter of 3 mm and a height of 10 mm. The bonding surface of the Y-TZP specimen was sandblasted with silica-coated aluminium oxide particles. The forty tribochemical silica-coated Y-TZP specimens were cemented to the bovine dentin (4 groups; n = 10) with either an MDP-free primer or an MDP-containing primer and either an MDP-free resin cement or an MDP-containing resin cement. After a shear bond strength (SBS) test, the data were analyzed using 1-way analysis of variance and the Tukey test (${\alpha}=0.05$). Results: The group with MDP-free primer and resin cement showed significantly lower SBS values than the MDP-containing groups (p < 0.05). Among the MDP-containing groups, the group with MDP-containing primer and resin cement showed significantly higher SBS values than the other groups (p < 0.05). Conclusions: The combination of MDP-containing primer and luting cement following tribochemical silica coating to Y-TZP was the best choice among the alternatives tested in this study.

Comparison of Bonding Strength by Cleaning Method of Pediatric Zirconia Crown Contaminated with Saliva or Blood (타액 및 혈액오염 시 유치 지르코니아 기성관 내면의 세척 방법에 따른 결합강도의 비교)

  • Kim, Jaeyong;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.2
    • /
    • pp.185-194
    • /
    • 2018
  • The objective of this study was to compare the shear bonding strength of zirconia after cleaning the crown contaminated by saliva or blood and determine the effect of thermocycling. 180 specimens were embedded in acrylic resin. 20 Specimens in the positive control group were bonded with resin cement without contamination. 20 Specimens in the negative control group were washed with water for 20 seconds and then dried for 10 seconds. 120 Specimens contaminated by saliva or blood were cleaned by using three cleaning methods: 37% phosphoric acid gel, commercial cleanse, and 2.5% NaOCl. All samples were bonded with resin cement and divided into two subgroups: One was not aged, and the other was tested with 30,000 thermocycling. In both groups contamination by saliva and blood, no statistically significant difference was not found in control, groups cleansed by commercial cleanser and 2.5% NaOCl. When the groups cleansed with water and 37% phosphate gel were compared with the control, significantly low shear bond strength was shown. Thermocycling group showed statistically significantly low shear bond stress compared to the groups without thermocycling. When zirconia was contaminated by saliva or blood, its original shear bond strength could be obtained if it was cleaned with commercial cleanser or 2.5% NaOCl.

Evaluation of shear-bond strength between different self-adhesive resin cements with phosphate monomer and zirconia ceramic before and after thermocycling (인산염계 기능성 단량체가 첨가된 수종의 자가 접착 레진시멘트와 지르코니아 세라믹 사이 열순환 전후 전단결합강도 비교)

  • Lee, Ji-Hun;Kim, Min-Kyung;Lee, Jung-Jin;Ahn, Seung-Geun;Park, Ju-Mi;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.318-324
    • /
    • 2015
  • Purpose: This study compared shear bond strengths of five self-adhesive cements with phosphate monomer to zirconium oxide ceramic with and without airborn particle abrasion. Materials and methods: One hundred zirconia samples were air-abraded ($50{\mu}mAl_2O_3$). One hundred composite resin cylinders were fabricated. Composite cylinders were bonded to the zirconia samples with either Permacem 2.0 (P), $Clearfil^{TM}$ SA Luting (C), $Multilink^{(R)}$ Speed (M), $RelyX^{TM}$ U200 Automix (R), G-Cem $LinkAce^{TM}$ (G). All bonded specimens were stored in distilled water ($37^{\circ}C$) for 24 h and half of them were additionally aged by thermocycling ($5^{\circ}C$, $55^{\circ}C$, 5,000 times). The bonded specimens were loaded in shear force until fracture (1 mm/min) by using Universal Testing Machine (Model 4201, Instron Co, Canton, MA, USA). The failure sites were inspected under field-emission scanning electron microscopy. The data was analyzed with ANOVA, Tukey HSD post-hoc test and paired samples t-test ($\alpha$=.05). Results: Before and after thermocycling, $Multilink^{(R)}$ Speed (M) revealed higher shear-bond strength than the other cements. G-Cem $LinkAce^{TM}$ (G) showed significantly lower bond strengths after thermocycling than before treatment (P<.05), but the other groups were not significantly different (P>.05). Conclusion: Most self-adhesive cements with phosphate monomer showed high shear bond strength with zirconia ceramic and weren't influenced by thermocycling, so they seem to valuable to zirconia ceramic bonding.

Joining Behavior of YSZ Ceramics to Al2O3-ZrO2-SiO2-R2O and Al2O2-ZrO2-SiO2-La2O3-R2O Glass Systems (Al2O3-ZrO2-SiO2-R2O와 Al2O3-ZrO2-SiO2-La2O3-R2O계 유리와 부분안정화 지르코니아간의 접합거동)

  • Choi, Jinsam;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.19-22
    • /
    • 2015
  • The joining behavior of YSZ ceramics to the glasses used in the $9Al_2O_3-24ZrO_2-51SiO_2-16R_2O$ and $9Al_2O_3-24ZrO_2-51SiO_2-7La_2O_3-9R_2O$ (wt%) glass systems was investigated. The glass transition and softening temperatures were determined to be $430^{\circ}C$ and $760^{\circ}C$, respectively. The behavior of the contact angle was inversely proportional to an increase in the temperature. The Zr element in YSZ acted as a nucleation agent and contributed to the bonding behavior at the interface.

Clinical Experiment Results of Cerec Inlab using Vita9 (VITA VM9 Zirconia powder를 이용한 Cerec inlab의 임상증례에 관하여)

  • Jung, Hyo-Kyung;kim, Jeong-Sook;Lee, Jong-Do
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Although there are many different ways that restorations can be made, it can be said that the biocompatibility of abutment and crown is very important in this experiment. When placed in the actual oral cavity, the differences were obvious. Compared to In-ceram Aluminium, the structure that is obtained after firing reveals a particularly homogeneous distribution of the crystal and glass phase. The In-ceram aluminium system had many problems, such as having weak tensile strength, and having low bonding strength due to the shrinking that occurs after firing. Because of the opaque finish of the metal frame, the two may look similar from the outside, but it is evident that there are differences between using a metal frame and In-ceram. VITA VM9 has been designed as a special ceramic featuring a fine structure or stabilized Zro2 substructures, and so the VITA VM9 excels in its light refraction and reflection behavior, which is similar to natural teeth. It also has outstanding chemical balance, which presents advantages such as considerably reduced accumulation of plaque on the ceramic surface.? This ultimately results in easier care and cleaning for the patient.

  • PDF

Bonding performance and fracture strength of resin-infiltrated zirconia blocks for CAD/CAM systems (캐드캠 시스템에서 사용되는 레진침투 지르코니아 블록의 접착양상과 파절강도)

  • Kim, Sa-Hak;Kim, Chong-Kyen;Kim, Wook-Tae;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.273-280
    • /
    • 2016
  • 연구목적: 본 연구의 목적은 통상적으로 사용되는 글라스 세라믹과 고분자를 침투시킨 지르코니아 소재로 제작된 코어와 레진 시멘트의 굴곡강도 및 결합강도를 비교하여 하이브리드 기술이 치과 재료의 물리적인 성질에 미치는 영향을 조사하기 위함이다. 연구방법: 본 두 가지의 통상적으로 사용되는 세라믹소재[Vita PM9(GC) and I-JAM(ZC)] 와 다른 두 가지 하이브리드 세라믹 소재 [CELTRA Duo(ZRC) and Vita Enamic(RIZ)] 를 평가하였다. 각 그룹의 소재를 선택하여 결합강도와 굴곡강도, 그리고 scanning electron microscopy(SEM)을 이용하여 표면분석을 시행하였다. 도출된 결과 데이터는 일원분산분석(One-way ANOVA)을 통해 분석되었으며, 제1종 오류의 수준은 0.05로 하였다. 연구결과: RIZ 그룹에서 가장 높은 결합강도를 보였으며(p<0.05), ZC 그룹이 가장 낮은 결과를 보였다. 상대적으로 굴곡강도는 ZC 그룹이 가장 높은 수치를 나타내었으며, RIZ 그룹이 가장 취약했다. 연구결론: 하이브리드 기술로 제작된 소재(RIZ 그룹)는 우수한 레진 시멘트와의 결합강도를 보였지만, 그에 비해 굴곡강도는 상대적으로 통상적인 지르코니아 소재보다 비교적 취약한 결과를 보였다.

Effect of surface treatment and luting agent type on shear bond strength of titanium to ceramic materials

  • Karaokutan, Isil;Ozel, Gulsum Sayin
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.78-87
    • /
    • 2022
  • PURPOSE. This study aimed to compare the effect of different surface treatments and luting agent types on the shear bond strength of two ceramics to commercially pure titanium (Cp Ti). MATERIALS AND METHODS. A total of 160 Cp Ti specimens were divided into 4 subgroups (n = 40) according to surface treatments received (control, 50 ㎛ airborne-particle abrasion, 110 ㎛ airborne-particle abrasion, and tribochemical coating). The cementation surfaces of titanium and all-ceramic specimens were treated with a universal primer. Two cubic all-ceramic discs (lithium disilicate ceramic (LDC) and zirconia-reinforced lithium silicate ceramic (ZLC)) were cemented to titanium using two types of resin-based luting agents: self-cure and dual-cure (n = 10). After cementation, all specimens were subjected to 5000 cycles of thermal aging. A shear bond strength (SBS) test was conducted, and the failure mode was determined using a scanning electron microscope. Data were analyzed using three-way ANOVA, and the Tukey-HSD test was used for post hoc comparisons (P < .05). RESULTS. Significant differences were found among the groups based on surface treatment, resin-based luting agent, and ceramic type (P < .05). Among the surface treatments, 50 ㎛ air-abrasion showed the highest SBS, while the control group showed the lowest. SBS was higher for dual-cure resin-based luting agent than self-cure luting agent. ZLC showed better SBS values than LDC. CONCLUSION. The cementation of ZLC with dual-cure resin-based luting agent showed better bonding effectiveness to commercially pure titanium treated with 50 ㎛ airborne-particle abrasion.