DOI QR코드

DOI QR Code

Evaluation of the bond strength between aged composite cores and luting agent

  • Polat, Serdar (Department of Prosthodontics, Faculty of Dentistry, Gazi University) ;
  • Cebe, Fatma (Department of Restorative, Faculty of Dentistry, Abant Izzet Baysal University) ;
  • Tuncdemir, Aliriza (Department of Prosthodontics, Faculty of Dentistry, Necmettin Erbakan University) ;
  • Ozturk, Caner (Department of Prosthodontics, Faculty of Dentistry, Ankara University) ;
  • Usumez, Aslihan (Department of Prosthodontics, Faculty of Dentistry, Bezmi Alem University)
  • Received : 2014.07.02
  • Accepted : 2015.02.09
  • Published : 2015.04.30

Abstract

PURPOSE. The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS. Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to $55^{\circ}C$) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at ${\alpha}$=.05. RESULTS. Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between $7.07{\pm}2.11$ and $26.05{\pm}6.53$ N. The highest bond strength of $26.05{\pm}6.53$ N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION. Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success.

Keywords

References

  1. Oilo G. Biodegradation of dental composites/glass-ionomer cements. Adv Dent Res 1992;6:50-4. https://doi.org/10.1177/08959374920060011701
  2. Bagheri R, Tyas MJ, Burrow MF. Subsurface degradation of resin-based composites. Dent Mater 2007;23:944-51. https://doi.org/10.1016/j.dental.2006.06.035
  3. Jaffer F, Finer Y, Santerre JP. Interactions between resin monomers and commercial composite resins with human saliva derived esterases. Biomaterials 2002;23:1707-19. https://doi.org/10.1016/S0142-9612(01)00298-8
  4. Groger G, Rosentritt M, Behr M, Schroder J, Handel G. Dental resin materials in vivo - TEM results after one year: a pilot study. J Mater Sci Mater Med 2006;17:825-8.
  5. Ferracane JL, Marker VA. Solvent degradation and reduced fracture toughness in aged composites. J Dent Res 1992;71:13-9. https://doi.org/10.1177/00220345920710010101
  6. Topcu FT, Sahinkesen G, Yamanel K, Erdemir U, Oktay EA, Ersahan S. Influence of different drinks on the colour stability of dental resin composites. Eur J Dent 2009;3:50-6.
  7. Gordan VV. Clinical evaluation of replacement of class V resin based composite restorations. J Dent 2001;29:485-8. https://doi.org/10.1016/S0300-5712(01)00030-6
  8. Taha NA, Palamara JE, Messer HH. Fracture strength and fracture patterns of root-filled teeth restored with direct resin composite restorations under static and fatigue loading. Oper Dent 2014;39:181-8. https://doi.org/10.2341/13-006-L
  9. Asensio Acevedo R, Suarez-Feito JM, Suarez Tuero C, Jane L, Roig M. The use of indirect composite veneers to rehabilitate patients with dental erosion: a case report. Eur J Esthet Dent 2013;8:414-31.
  10. Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in-vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 1989;23:45-61. https://doi.org/10.1002/jbm.820230105
  11. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconiabased ceramics. J Dent 2000;28:529-35. https://doi.org/10.1016/S0300-5712(00)00030-0
  12. Wolfart M, Lehmann F, Wolfart S, Kern M. Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent Mater 2007;23:45-50. https://doi.org/10.1016/j.dental.2005.11.040
  13. Ozcan M, Kerkdijk S, Valandro LF. Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers' instructions of the cements only. Clin Oral Investig 2008;12:279-82. https://doi.org/10.1007/s00784-007-0151-y
  14. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25. https://doi.org/10.1016/S0142-9612(98)00010-6
  15. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  16. Fazi G, Vichi A, Ferrari M. Influence of surface pretreatment on the short-term bond strength of resin composite to a zirconia-based material. Am J Dent 2012;25:73-8.
  17. Blatz MB, Sadan A, Arch GH Jr, Lang BR. In vitro evaluation of long-term bonding of Procera AllCeram alumina restorations with a modified resin luting agent. J Prosthet Dent 2003;89:381-7. https://doi.org/10.1067/mpr.2003.89
  18. Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007;38:745-53.
  19. Thompson JY, Rapp MM, Parker AJ. Microscopic and energy dipersive x-ray analysis of surface adaptation of dental cements to dental ceramic surfaces. J Prosthet Dent 1998;79:378-83. https://doi.org/10.1016/S0022-3913(98)70148-9
  20. Derand T, Molin M, Kvam K. Bond strength of composite luting cement to zirconia ceramic surfaces. Dent Mater 2005;21:1158-62. https://doi.org/10.1016/j.dental.2005.02.005
  21. Atsu SS, Kilicarslan MA, Kucukesmen HC, Aka PS. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dent 2006;95:430-6. https://doi.org/10.1016/j.prosdent.2006.03.016
  22. Burke FJ, Fleming GJ, Nathanson D, Marquis PM. Are adhesive technologies needed to support ceramics? An assessment of the current evidence. J Adhes Dent 2002;4:7-22.
  23. Kobayashi K, Komine F, Blatz MB, Saito A, Koizumi H, Matsumura H. Influence of priming agents on the shortterm bond strength of an indirect composite veneering material to zirconium dioxide ceramic. Quintessence Int 2009;40:545-51.
  24. Komine F, Kobayashi K, Saito A, Fushiki R, Koizumi H, Matsumura H. Shear bond strength between an indirect composite veneering material and zirconia ceramics after thermocycling. J Oral Sci 2009;51:629-34. https://doi.org/10.2334/josnusd.51.629
  25. Komine F, Kobayashi K, Blatz MB, Fushiki R, Koizuka M, Taguchi K, Matsumura H. Durability of bond between an indirect composite veneering material and zirconium dioxide ceramics. Acta Odontol Scand 2013;71:457-63. https://doi.org/10.3109/00016357.2012.696686
  26. Armstrong S, Geraldeli S, Maia R, Raposo LH, Soares CJ, Yamagawa J. Adhesion to tooth structure: a critical review of "micro" bond strength test methods. Dent Mater 2010;26:e50-62.
  27. Roman-Rodriguez JL, Fons-Font A, Amigo-Borras V, Granell-Ruiz M, Busquets-Mataix D, Panadero RA, Sola-Ruiz MF. Bond strength of selected composite resin-cements to zirconium-oxide ceramic. Med Oral Patol Oral Cir Bucal 2013;18:e115-23.
  28. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 2007;23:1276-82. https://doi.org/10.1016/j.dental.2006.11.007
  29. Ozel Bektas Ö, Eren D, Herguner Siso S, Akin GE. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med Sci 2012;27:723-8. https://doi.org/10.1007/s10103-011-0958-2
  30. Cho SD, Rajitrangson P, Matis BA, Platt JA. Effect of Er,Cr:YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites. Oper Dent 2013;38:E1-9. https://doi.org/10.2341/11-436-L
  31. Shahdad SA, Kennedy JG. Bond strength of repaired anterior composite resins: an in vitro study. J Dent 1998;26:685-94. https://doi.org/10.1016/S0300-5712(97)00044-4
  32. Nilsson E, Alaeddin S, Karlsson S, Milleding P, Wennerberg A. Factors affecting the shear bond strength of bonded composite inlays. Int J Prosthodont 2000;13:52-8.
  33. Lewis G, Johnson W, Martin W, Canerdy A, Claburn C, Collier M. Shear bond strength of immediately repaired lightcured composite resin restorations. Oper Dent 1998;23:121-7.
  34. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S. Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomed Laser Surg 2010;28:S25-30.
  35. Lizarelli Rde F, Moriyama LT, Bagnato VS. Ablation of composite resins using Er:YAG laser-comparison with enamel and dentin. Lasers Surg Med 2003;33:132-9. https://doi.org/10.1002/lsm.10196
  36. Shimizu Y, Tada K, Seki H, Kakuta K, Miyagawa Y, Shen JF, Morozumi Y, Kamoi H, Sato S. Effects of air polishing on the resin composite-dentin interface. Odontology 2014;102:279-83. https://doi.org/10.1007/s10266-013-0111-8
  37. Rinaudo PJ, Cochran MA, Moore BK. The effect of air abrasion on shear bond strength to dentin with dental adhesives. Oper Dent 1997;22:254-9.
  38. Salerno M, Giacomelli L, Derchi G, Patra N, Diaspro A. Atomic force microscopy in vitro study of surface roughness and fractal character of a dental restoration composite after air-polishing. Biomed Eng Online 2010;9:59. https://doi.org/10.1186/1475-925X-9-59
  39. Swift EJ Jr, Cloe BC, Boyer DB. Effect of a silane coupling agent on composite repair strengths. Am J Dent 1994;7:200-2.
  40. Burnett LH Jr, Shinkai RS, Eduardo Cde P. Tensile bond strength of a one-bottle adhesive system to indirect composites treated with Er:YAG laser, air abrasion, or fluoridric acid. Photomed Laser Surg 2004;22:351-6. https://doi.org/10.1089/pho.2004.22.351
  41. Lucena-Martin C, Gonzalez-Lopez S, Navajas-Rodriguez de Mondelo JM. The effect of various surface treatments and bonding agents on the repaired strength of heat-treated composites. J Prosthet Dent 2001;86:481-8. https://doi.org/10.1067/mpr.2001.116775
  42. Keski-Nikkola MS, Alander PM, Lassila LV, Vallittu PK. Bond strength of Gradia veneering composite to fibre-reinforced composite. J Oral Rehabil 2004;31:1178-83. https://doi.org/10.1111/j.1365-2842.2004.01342.x
  43. Lizarelli RFZ, Moriyama LT, Jorge JRP, Bagnato VS. Comparative ablation rate from a Er: YAG laser on enamel and dentin of primary and permanent teeth. Laser Phys 2006;16:849-58. https://doi.org/10.1134/S1054660X06050173
  44. Lizarelli RFZ, Moriyama LT, Pelino JEP, Bagnato VS. Ablation rate and morphological aspects of composite resins exposed to Er: YAG laser. J Oral Laser App 2005;5:151-60.

Cited by

  1. Repair bond strength of composite resin to zirconia restorations after different thermal cycles vol.11, pp.5, 2015, https://doi.org/10.4047/jap.2019.11.5.297
  2. The influence of Er:YAG laser irradiation on re-bonding shear bond strength of enamel vol.35, pp.22, 2021, https://doi.org/10.1080/01694243.2021.1888581