• 제목/요약/키워드: zero-error

검색결과 760건 처리시간 0.021초

Blind Algorithms with Decision Feedback based on Zero-Error Probability for Constant Modulus Errors

  • Kim, Nam-Yong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제36권12C호
    • /
    • pp.753-758
    • /
    • 2011
  • The constant modulus algorithm (CMA) widely used in blind equalization applications minimizes the averaged power of constant modulus error (CME) defined as the difference between an instant output power and a constant modulus. In this paper, a decision feedback version of the linear blind algorithm based on maximization of the zero-error probability for CME is proposed. The Gaussian kernel of the maximum zero-error criterion is analyzed to have the property to cut out excessive CMEs that may be induced from severely distorted channel characteristics. Decision feedback approach to the maximum zero-error criterion for CME is developed based on the characteristic that the Gaussian kernel suppresses the outliers and this prevents error propagation to some extent. Compared to the linear algorithm based on maximum zero-error probability for CME in the simulation of blind equalization environments, the proposed decision feedback version has superior performance enhancement particularly in cases of severe channel distortions.

Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • 제14권1호
    • /
    • pp.9-14
    • /
    • 2013
  • The criterion of zero-error probability provides a limitation on error probability functions being used for adaptive systems when the error samples are shifted by the influence of DC-bias noise. In this paper, we employ a bias term in the error distribution and propose a new criterion of the biased zero-error probability with error being zero. Also, by maximizing the proposed criterion on expanded filter structures, a supervised adaptive algorithm has been derived. From the simulation results of supervised equalization, the algorithm based on the proposed criterion yielded zero-centered and highly concentrated error samples without disturbance in the environments of strong impulsive and DC-bias noise.

ERROR BOUNDS FOR SUMPSONS QUADRATURE THROUGH ZERO MEAN GEUSSIAN WITH COVARIANCE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • Communications of the Korean Mathematical Society
    • /
    • 제16권4호
    • /
    • pp.691-701
    • /
    • 2001
  • We computed zero mean Gaussian of average error bounds pf Simpsons quadrature with convariances in [2]. In this paper, we compute zero mean Gaussian of average error bounds between Simpsons quadrature and composite Simpsons quadra-ture on four consecutive subintervals. The reason why we compute these on subintervals is because these results enable us to compute a posteriori error bounds on the whole interval in the later paper.

  • PDF

BOUNDS OF ZERO MEAN GAUSSIAN WITH COVARIANCE FOR AVERAGE ERROR OF TRAPEZOIDAL RULE

  • Hong, Bum-Il;Choi, Sung-Hee;Hahm, Nahm-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.231-242
    • /
    • 2001
  • We showed in [2] that if r≤2, zero mean Gaussian of average error of the Trapezoidal rule is proportional to h/sub i//sup 2r+3/ on the interval [0,1]. In this paper, if r≥3, we show that zero mean Gaussian of average error of the Trapezoidal rule is bounded by Ch⁴/sub i/h⁴/sub j/.

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • 제12권5호
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

Recursive Estimation of Biased Zero-Error Probability for Adaptive Systems under Non-Gaussian Noise (비-가우시안 잡음하의 적응 시스템을 위한 바이어스된 영-오차확률의 반복적 추정법)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2016
  • The biased zero-error probability and its related algorithms require heavy computational burden related with some summation operations at each iteration time. In this paper, a recursive approach to the biased zero-error probability and related algorithms are proposed, and compared in the simulation environment of shallow water communication channels with ambient noise of biased Gaussian and impulsive noise. The proposed recursive method has significantly reduced computational burden regardless of sample size, contrast to the original MBZEP algorithm with computational complexity proportional to sample size. With this computational efficiency the proposed algorithm, compared with the block-processing method, shows the equivalent robustness to multipath fading, biased Gaussian and impulsive noise.

Efficient Adaptive Algorithms Based on Zero-Error Probability Maximization (영확률 최대화에 근거한 효율적인 적응 알고리듬)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제39A권5호
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper, a calculation-efficient method for weight update in the algorithm based on maximization of the zero-error probability (MZEP) is proposed. This method is to utilize the current slope value in calculation of the next slope value, replacing the block processing that requires a summation operation in a sample time period. The simulation results shows that the proposed method yields the same performance as the original MZEP algorithm while significantly reducing the computational time and complexity with no need for a buffer for error samples. Also the proposed algorithm produces faster convergence speed than the algorithm that is based on the error-entropy minimization.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Pole-zero placement self-tuning controller minimizing tracking error (추종 오차를 최소화하는 극-영점 배치 자기 동조 제어기)

  • 한규정;이종용;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.179-181
    • /
    • 1987
  • In this paper, a self-tuning controller design is proposed by using pole-zero placement method and considering a system time delay. To got better tracking for the generalized self-tuning controller, pole placement method for the closed loop system and zero placement method for the error transfer function are Introduced. The proposed method shows better efficiency than pole placement method for minimizing tracking error. Simulation gives good results in tie reference signal tracking.

  • PDF

ASYMPTOTIC ERROR ANALYSIS OF k-FOLD PSEUDO-NEWTON'S METHOD LOCATING A SIMPLE ZERO

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제21권4호
    • /
    • pp.483-492
    • /
    • 2008
  • The k-fold pseudo-Newton's method is proposed and its convergence behavior is investigated near a simple zero. The order of convergence is proven to be at least k + 2. The asymptotic error constant is explicitly given in terms of k and the corresponding simple zero. High-precison numerical results are successfully implemented via Mathematica and illustrated for various examples.

  • PDF