• 제목/요약/키워드: zero-divisor graph of modules

검색결과 3건 처리시간 0.015초

RINGS WHOSE ASSOCIATED EXTENDED ZERO-DIVISOR GRAPHS ARE COMPLEMENTED

  • Driss Bennis;Brahim El Alaoui;Raja L'hamri
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.763-777
    • /
    • 2024
  • Let R be a commutative ring with identity 1≠ 0. In this paper, we continue the study started in [10] to further investigate when the extended zero-divisor graph of R, denoted as $\bar{\Gamma}$(R), is complemented. We also study when $\bar{\Gamma}$(R) is uniquely complemented. We give a complete characterization of when $\bar{\Gamma}$(R) of a finite ring R is complemented. Various examples are given using the direct product of rings and idealizations of modules.

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.