• Title/Summary/Keyword: zero-current-switching(ZCS)

Search Result 173, Processing Time 0.027 seconds

Design and Development of a High-Voltage Transformer-less Power Supply for Ozone Generators Based on a Voltage-fed Full Bridge Resonant Inverter

  • Amjad, Muhammad;Salam, Zainal;Facta, Mochammad;Ishaque, Kashif
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.387-398
    • /
    • 2012
  • It is known that transformer based power supplies for ozone generators have low efficiency, high cost and exhibits a limited frequency range of operation. To overcome these disadvantages, this paper proposes a high frequency ozone generator with the absence of a transformer. The voltage step-up is achieved only by utilizing the resonant tank. This is made possible by a novel combination of ozone chamber materials that allow ozone to be generated at only 1.5 - 3.5 $kV_{p-p}$. The input to the resonant tank is driven by a PWM full bridge resonant inverter. Furthermore, zero-current zero-voltage switching (ZCZVS) operation is achieved by employing a duty factor of 25% between the switches of the full bridge. The advantages of the proposed system include high efficiency, low cost and the ability to control ozone production by varying the input voltage to the inverter. The prototype is verified by both simulation and experimental results.

A study on PWM power conversion system by soft switching type using active resonant condenser (액티브 공진 콘덴서를 이용한 소프트 스위칭형 PWM 전력변환기에 관한 연구)

  • Kwak, Dong-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.174-176
    • /
    • 2003
  • The power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. This paper proposes a skillful and a concise PWM DC-DC converter employing both zero voltage and zero current high frequency switching(ZVCS) operation. The Proposal ZVCS circuit is composed with resonant circuit using active resonant condenser. And this circuit provides switches with ZVS and ZCS by quasi resonant only that switching transients appear. This operation results in reduction of stress and losses in the power devices and resonant components. Some simulation results are included to confirm the validity of the analytical results.

  • PDF

A Study on Efficiency Improvement of Resonant Inverters (공진형 인버터의 효율 향상에 관한 연구)

  • Cho, Kyu-Min;You, Wan-Sik;Kim, Nam-Jeung;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.409-411
    • /
    • 1999
  • Usually, in many applications. high frequency resonant inverters are used and the ZVS(Zero Voltage Switching) or ZCS(Zero Current Switching) techniques are used to improve the efficiency of resonant inverters. In this paper, a new switching scheme is proposed to improve the efficiency of resonant inverters which is based on the plan to keep the unity output displacement factor under the variable resonant frequency. The detail algorithm of the proposed switching sheme and the simulation results are presented.

  • PDF

Integrated Boost-Flyback ZCS Quasi-Resonant Power Factor Preregulator (부스트-플라이백 결합형 ZCS Quasi-Resonant 역률개선 컨버터)

  • 이준영;문건우;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.91-98
    • /
    • 1999
  • An integrated ZCS quasi-resonant converter(QRC) for the power factor correction with a single switch is presented in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of the input current. The proposed converter gives the good power factor, low line current harmonics, and tight output regulation. The input current waveform of the prototype designed using design equations shows about 15% of total harmonic distortion at rated condition. Also, the efficiency and power factor can be obtained about 86% and 0.985, respectively, at rated condition. The proposed converter is suitable for a low power level converter with a tightly regulated low output voltage and switching frequency of more than several hundreds kHz.

  • PDF

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

Lossless Inductor Snubber-Assisted ZCS-PFM High Frequency Series Resonant Inverter for Eddy Current-Heated Roller

  • Feng Y. L.;Ishitobi M.;Okuno A.;Nakaoka M.;Lee H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.304-308
    • /
    • 2001
  • This paper presents a novel prototype of ZCS-PFM high frequency series resonant inverter using IGBT power module for electromagnetic induction eddy current-heated roller in copy and printing machines. The operating principle and unique features of this voltage source half bridge inverter with two additional soft commutation inductor snubber are presented including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

  • PDF

ZCS-PFM Series Resonant High Frequency Inverter for Electromagnetic Induction Eddy Current-Heated Roller

  • Mun, Sang-Pil;Jung, Sang-Hwa;Kim, Chang-Il;Kim, Sang-Don;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.419-422
    • /
    • 2008
  • This paper presents a novel prototype of ZCS-PFM high frequency series resonant Inverter using IGBT power module for electromagnetic induction eddy current-heated roller in copy and printing machines. The operating principle and unique features of this voltage source half bridge inverter with two additional soft commutation inductor snubber are presented Including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

  • PDF

Bi-Directional Interleaved Current-Fed Resonant Converter with Reduced Sized of Output Filter for FCEV (출력 필터의 크기를 줄인 연료전지 자동차용 양방향 인터리브드 전류원 공진형 컨버터)

  • Moon, Dong-Ok;Park, Jun-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.503-510
    • /
    • 2014
  • This study proposes a bi-directional interleaved current-fed resonant converter (CRC) with reduced size of the output filter for a fuel cell electric vehicle. The proposed CRC achieves zero-current switching turn on and off of switches and diodes and makes ripple current of the output capacitor theoretically zero. As a result, the cost and volume of the output capacitor are significantly reduced. The two-stage power conversion technique is also applied for wide input and output voltage range operations. A 2kW prototype of the proposed converter is built and tested to verify the validity of the proposed operation.

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

Interleaved Boost-Flyback Converter with Boundary Conduction Mode for Power Factor Correction

  • Lin, Bor-Ren;Chien, Chih-Cheng
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.708-714
    • /
    • 2012
  • This paper presents a new interleaved pulse-width modulation (PWM) boost-flyback converter to achieve power factor correction (PFC) and regulate DC bus voltage. The adopted boost-flyback converter has a high voltage conversion ratio to overcome the limit of conventional boost or buck-boost converter with narrow turn-off period. The proposed converter has wide turn-off period compared with a conventional boost converter. Thus, the higher output voltage can be achieved in the proposed converter. The interleaved PWM can further reduce the input and output ripple currents such that the sizes of inductor and capacitor are reduced. Since boundary conduction mode (BCM) is adopted to achieve power factor correction, power switches are turned on at zero current switching (ZCS) and switching losses are reduced. The circuit configuration, principle operation, system analysis, and design consideration of the proposed converter are presented in detail. Finally, experiments conducted on a laboratory prototype rated at 500W were presented to verify the effectiveness of the converter.