영가철과 산소가 반응 시 유기화합물들을 산화시킬 수 있는 활성산화제가 생성되게 된다. 이에 본 연구에서는 이러한 반응기작을 고려하여 슬러지의 가용화를 위한 전처리 방법으로서 영가철과 공기주입의 혼합에 의한 전처리 효과를 평가하였다. 실험결과 슬러지의 가용화를 위해 공기주입만 단독으로 적용하였을 때보다 영가철과 공기주입을 동시에 적용하였을 때 슬러지의 가용화가 더욱 효과적인 것으로 분석되어 영가철의 투입이 슬러지의 가용화 범위를 증가시키는 것으로 나타났다. 또한 영가철과 공기주입 시 암모니아성 질소 농도의 제거율이 34%로 나타난 반면에 단독으로 공기만 주입 시에는 24%로 나타났다. 따라서 영가철과 공기주입에 의한 전처리 방법은 슬러지의 가용화 효율을 향상시킬 수 있으면서 암모니아성 질소로 인한 혐기성 소화의 저해 가능성을 감소시킬 수 있을 것으로 판단된다.
질산성질소와 트리클로로에틸렌(TCE)을 동시에 제거하고자 이들을 화학적 생물학적으로 환원 및 수착시키는 반응매질로서 영가철과 피트(peat)를 이용하였다. 영가철의 수중산화로 발생된 수소가 질산성질소와 TCE를 환원시켜 두 물질이 제거하는데 TCE의 수착제거가 가능한 피트를 이용하고 그에 따른 혼합미생물의 생분해 및 전자전달의 효과를 이용하였다. 질산성질소의 경우 영가철과 피트혼합매질에서 제거효율이 우수하나 제거기작이 환원에 의존하므로 TCE가 공존시 전자에 대한 경쟁으로 그 제거효율이 감소하였으며 멸균처리한 피트를 사용한 실험군과의 결과비교로 탈질균의 작용을 알 수 있었다. TCE의 경우 영가철이 함유된 매질에서 제거효율이 높으며 질산염 공존이 영향을 미치지 못하였다. 생분해하는 혐기성 미생물군의 존재는 시스템에서 발생한 수소와 메탄가스 분석으로 확인하였다.
Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.
Characteristics of the transport of zero-valent iron nanoparticles (nZVI) in an aquifer were investigated to evaluate an application of nZVI-based reactive zone technology. Main flow direction of groundwater was north. Preferential flow paths of the groundwater identified by natural gradient tracer test were shown northeast and northwest. The highest groundwater velocity was $4.86{\times}10^{-5}$ m/s toward northwest. When the breakthrough curves obtained from the gravity injection of nZVI were compared with the tracer curves, the transport of nZVI was retarded and retardation factors were 1.17 and 1.34 at monitoring wells located on the northeast and northwest, respectively. The ratios of the amount of nZVI delivered to the amount of tracer delivered at the two wells mentioned above were 24 and 28 times greater than that of the well on the main flow direction, respectively. Attachment efficiency based on a filtration theory was $4.08{\times}10^{-2}$ along the northwest direction that was the main migration route of nZVI. Our results, compared to attachment efficiencies obtained in other studies, demonstrate that the mobility of nZVI was higher than that of results reported in previous studies, regardless of large iron particle sizes of the current study. Based on distribution of nZVI estimated by the attachment efficiency, it was found that nZVI present within 1.05 m from injection well could remove 99% of TCE within 6 months.
We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.
퍼클로레이트($ClO_4^-$)는 지표수 및 토양/지하수에서 검출되는 오염물이다. 독립영양방식의 퍼클로레이트-환원세균(PRB)은 기체 수소(H2)를 전자공여체로 사용하여 $ClO_4^-$를 제거한다. 철이 부식되면 $H_2$를 생성할 수 있음에 착안하여 본 연구에서는 하수처리장에서 쉽게 구할 수 있는 활성슬러지를 식종하여 영가철(ZVI)을 이용한 독립 영양방식의 $ClO_4^-$ 제거 가능성을 조사하였다. 회분반응실험을 통해 활성슬러지미생물이 ZVI가 존재할 때 $ClO_4^-$를 분해할 수 있음을 알 수 있었으며, 또한 이러한 $ClO_4^-$의 생분해는 $ClO_4^-$가 분해됨에 따라 생성되는 $Cl^-$의 몰 농도를 통해 확인 할 수 있었다. 독립영양방식의 $ClO_4^-$ 제거공정에 사용된 철 입자의 표면에 간균형태의 미생물들이 존재한다는 것을 주사전자현미경을 통해 관찰하였다. 그래서 철 입자가 생물막을 형성하기 위한 담체로서도 작용할 수 있다는 것을 알 수 있었다. ZVI가 첨가된 $ClO_4^-$ 분해성 농화배양으로부터 채취한 생물막의 미생물군집조성은 접종균으로 사용된 활성슬러지의 그것과는 다름이 DGGE 분석 결과 나타났다. DGGE band 중에서 생물막의 주요밴드는 Clostridia 강과 가장 관련이 있는 것으로 나타났다.
MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.
This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and $0.1395min^{-1}$ respectively. A nitrogen mass balance, established by quantitative analysis of aqueous nitrogen species, showed that the addition of PVP/VA to nZVI can change the reduction capacity of the nanoparticles.
The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.