DOI QR코드

DOI QR Code

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test

영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구

  • 안영희 (부산광역시 사하구 하단동 동아대학교 환경공학과) ;
  • 하명규 (기초과학지원연구원 부산센터)
  • Received : 2011.02.15
  • Accepted : 2011.03.15
  • Published : 2011.03.30

Abstract

Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

퍼클로레이트($ClO_4^-$)는 지표수 및 토양/지하수에서 검출되는 오염물이다. 독립영양방식의 퍼클로레이트-환원세균(PRB)은 기체 수소(H2)를 전자공여체로 사용하여 $ClO_4^-$를 제거한다. 철이 부식되면 $H_2$를 생성할 수 있음에 착안하여 본 연구에서는 하수처리장에서 쉽게 구할 수 있는 활성슬러지를 식종하여 영가철(ZVI)을 이용한 독립 영양방식의 $ClO_4^-$ 제거 가능성을 조사하였다. 회분반응실험을 통해 활성슬러지미생물이 ZVI가 존재할 때 $ClO_4^-$를 분해할 수 있음을 알 수 있었으며, 또한 이러한 $ClO_4^-$의 생분해는 $ClO_4^-$가 분해됨에 따라 생성되는 $Cl^-$의 몰 농도를 통해 확인 할 수 있었다. 독립영양방식의 $ClO_4^-$ 제거공정에 사용된 철 입자의 표면에 간균형태의 미생물들이 존재한다는 것을 주사전자현미경을 통해 관찰하였다. 그래서 철 입자가 생물막을 형성하기 위한 담체로서도 작용할 수 있다는 것을 알 수 있었다. ZVI가 첨가된 $ClO_4^-$ 분해성 농화배양으로부터 채취한 생물막의 미생물군집조성은 접종균으로 사용된 활성슬러지의 그것과는 다름이 DGGE 분석 결과 나타났다. DGGE band 중에서 생물막의 주요밴드는 Clostridia 강과 가장 관련이 있는 것으로 나타났다.

Keywords

References

  1. APHA. 1995. Standard methods for examination of water and wastewater. 19th eds. American Public Health Association, Washington, D. C., USA.
  2. Ahn. Y., E. J. Park, Y. K. Oh, S. Park, and G. Webster, and A. J. Weightman. 2005. Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS Microbiol. Lett. 249, 31-38. https://doi.org/10.1016/j.femsle.2005.05.050
  3. Coates, J. D. and L. A. Achenbach. 2004. Microbial perchlorate reduction: Rocket-fuelled metabolism. Nat. Rev. Microbiol. 2, 569-580. https://doi.org/10.1038/nrmicro926
  4. Daniels, L., N. Belay, B. S. Rajagopal, and P. J. Weimer. 1987. Bacterial methanogenesis and growth from $CO_2$ with elemental iron as the sole source of electrons. Science 237, 509-511. https://doi.org/10.1126/science.237.4814.509
  5. Kim, H., J. Kim, and Y. Lee. 2007. Occurrence of perchlorate in drinking water in Korea. J. Korean Soc. Water Quality 23, 822-828.
  6. Kim, H., J. Kim, Y. Lee, J. Lee, and S. Kim. 2008. Perchlorate in advanced drinking water treatment process. J. Korean Soc. Water Quality 24, 164-168.
  7. Lee, C. 2009. Optimum treatment of sewage and wastewater discharged in Gumi industrial complex. Final report 09-2-10-16-5. Gyeongbuk regional environment technology development center. Gyeongbuk, Korea.
  8. Lee, K., S. Kim, K. Lee, and O. Kwon. 2010. Biological treatment of perchlorate in inorganic wastewater from primary zinc smelting industry. Proceedings of Korean Soc. on Water Quality April 16. Taejon, Korea. 103-104.
  9. Logan, B. E. 1998. A review of chlorate-and perchlorate- respiring microorganisms. Bioremediation J. 2, 69-79. https://doi.org/10.1080/10889869891214222
  10. Miller, J. P. and Logan, B. E. 2000. Sustained perchlorate degradation in an autographic, gas-phase, packed-bed bioreactor. Environ. Sci. Technol. 34, 3018-3022. https://doi.org/10.1021/es991155d
  11. Min, B., P. J. Evans, A. K. Chiu, and B. E. Logan. 2004. Perchlorate removal in sand and plastic media bioreactors. Water Res. 38, 47-60. https://doi.org/10.1016/j.watres.2003.09.019
  12. Moore, A. M., C. H. De Leon, and T. M. Young. 2003. Rate and extent of aqueous perchlorate removal by iron surfaces. Environ. Sci. Technol. 37, 3189-3198. https://doi.org/10.1021/es026007t
  13. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ. Forensics 2, 301-311. https://doi.org/10.1006/enfo.2001.0059
  14. National Research Council. 2005. Health Implications of Perchlorate Ingestion. National Academy of Sciences. Washington, D. C., USA.
  15. Republic of Korea Ministry of Environment. 2007. Notice on amendment of law relating to conservation of water quality and water ecosystem. Notice No. 2007-419. http://me.go.kr/kor/notice/notice_02_01.jsp?id=notice_02&mode=view&idx=166060.
  16. Shin, K. H., A. Son, D. K. Cha, and K. W. Kim. 2007. Review on risks of perchlorate and treatment technologies. J. Korean Soc. Environ. Eng. 29, 1060-1068.
  17. US EPA. 1999. EPA METHOD 314.0: Determination of perchlorate in drinking water using ion chromatography.

Cited by

  1. Perchlorate Removal by River Microorganisms in Industrial Complexes vol.52, pp.1, 2014, https://doi.org/10.9713/kcer.2014.52.1.92