Simultaneous Removal of Nitrate and Trichloroethylene by Zero Valent Iron and Peat

영가철과 피트를 이용한 질산성질소와 트리클로로에틸렌의 제거

  • Min, Jee-Eun (Department of Civil Engineering, Hanyang University) ;
  • Kim, Mee-Jeong (Department of Civil Engineering, Hanyang University) ;
  • Park, Jae-Woo (Department of Civil Engineering, Hanyang University)
  • Published : 2006.10.31

Abstract

As common pollutants in surface and groundwater, nitrate nitrogen($NO_3-N$) and trichloroethylene(TCE) can be chemically and biologically reduced by zero valent iron(ZVI) and peat soil. In batch microcosm experiments, chemical reduction of TCE and nitrate was supported by hydrogen from ZVI. For biological degradation of TCE and denitrification peat soil was introduced. ZVI reduced TCE, while peat provided TCE sorption site and microbes performing biological degradation. Nitrate reduction was also achieved by hydrogen from ZVI. In addition, indirect evidence of denitrification was observed. More reduction of TCE and nitrate was achieved by ZVI+peat treatment however nitrated reduction was hindered in the presence of TCE in the system due to the competition for hydrogen. TCE reduction mechanism was more dependent on ZVI, while nitrate was peat-dependent. Hydrogen and methane concentration showed that peat had various anaerobic denitryfing and halorespiring bacteria.

질산성질소와 트리클로로에틸렌(TCE)을 동시에 제거하고자 이들을 화학적 생물학적으로 환원 및 수착시키는 반응매질로서 영가철과 피트(peat)를 이용하였다. 영가철의 수중산화로 발생된 수소가 질산성질소와 TCE를 환원시켜 두 물질이 제거하는데 TCE의 수착제거가 가능한 피트를 이용하고 그에 따른 혼합미생물의 생분해 및 전자전달의 효과를 이용하였다. 질산성질소의 경우 영가철과 피트혼합매질에서 제거효율이 우수하나 제거기작이 환원에 의존하므로 TCE가 공존시 전자에 대한 경쟁으로 그 제거효율이 감소하였으며 멸균처리한 피트를 사용한 실험군과의 결과비교로 탈질균의 작용을 알 수 있었다. TCE의 경우 영가철이 함유된 매질에서 제거효율이 높으며 질산염 공존이 영향을 미치지 못하였다. 생분해하는 혐기성 미생물군의 존재는 시스템에서 발생한 수소와 메탄가스 분석으로 확인하였다.

Keywords

References

  1. Montemurro, F., Maioranaa, M., Ferrial, D., and Convertini, G., 'Nitrogen indicators, uptake and utilization efficiency in a maize and barley rotation cropped at different levels and sources of N fertilization,' Field Crops Research, 99(2-3), 114- 124(2006) https://doi.org/10.1016/j.fcr.2006.04.001
  2. Bruce, O. M. and Edward, D. S., 'Hydrogenotrophic denitrification in a microporous membrane bioreactor,' Water Res., 36(19), 4683-4690(2002) https://doi.org/10.1016/S0043-1354(02)00197-5
  3. Chang, C. C., Tseng, S. K., and Huang, H. K., 'Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment,' Bioresource Technol., 69, 53-58(1999) https://doi.org/10.1016/S0960-8524(98)00168-0
  4. Kurt, M., Dunn, I. J., and Bourne, J. R., 'Biological denitrification of drinking water using autotrophic organisms with $H_2$ in a fluidized-bed reactor,' Biotechnol. Bioeng., 29, 493 - 501(1987) https://doi.org/10.1002/bit.260290414
  5. Dries, D., Liessens, J., Verstraete, W., Stevens, P., de Vos, P., and de Ley, J., 'Nitrate removal from drinking water by means of hydrogenotrophic denitrifiers in a polyurethane carrier reactor,' Water Supply, 6, 181-192( 1987)
  6. Cooper, D. C., Picardal, F. W., Schmmenlmann, A., and Coby, A. J., 'Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200,' Appl. Environ. Microbiol., 69(6), 3517-3525( 2003) https://doi.org/10.1128/AEM.69.6.3517-3525.2003
  7. Maia, S., Fleming, S., and Alexander, J. H., 'Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification,' Environ. Sci. Technol., 38(6), 1231-1237(2002)
  8. Kesseru, P., Kiss, I., Bihari, Z., and Polyak, B., 'Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells,' Biosource Technol., 87(1), 75 - 80(2003) https://doi.org/10.1016/S0960-8524(02)00209-2
  9. Kielemoes, J., De Boever, P., and Verstraete, W., 'Influence of denitrification on the corrosion of iron and stainless steel powder,' Environ. Sci. Technol., 34(4), 663 - 671(2000) https://doi.org/10.1021/es9902930
  10. Alowitz, M. J. and Schere, M. M., 'Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal,' Environ. Sci. Technol., 36(3), 299 - 306(2000)
  11. 민지은, 박재우, '영가철과 피트(peat)를 이용한 질산성 질소와 TCE의 제거,' 대한토목학회 정기 학술 대회, 대한토목학회, 제주, pp. 280(2005)
  12. Lee, H.-J., Chun, B.-S., Kim, W.-C., Chung, M., and Park, J.-W., 'Zero valent iron and clay mixtures for removal of trichloroethylene, Cr(VI), and nitrate,' Environ. Technol., 27(2), 299 - 306(2006) https://doi.org/10.1080/09593332708618642
  13. Arnolds, W. A. and Roberts, A. L., 'Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with $Fe^o$ particles,' Environ. Sci. Technol., 34(9), 1794-1805(2000) https://doi.org/10.1021/es990884q
  14. Roh, Y., Lee, S., and Elless, M., 'Characterization of corrosion products in the permeable reactive barriers,' Environ. Geol., 40(1-2), 184-194(2000) https://doi.org/10.1007/PL00013327
  15. Cord-Ruwisch, R. and Widdel, F., 'Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria,' Appl. Microbiol. Biotechnol., 25(2), 169-174(1986) https://doi.org/10.1007/BF00938942
  16. Lorowitz, W. H., Nagle, D. N., and Tanner, R. S., 'Anaerobic oxidation of elemental metals coupled to methanogenesis by Methanobacterium thermoautotrophicum,' Environ. Sci. Technol., 26(8), 1606-1610(1992) https://doi.org/10.1021/es00032a018
  17. Rosenthal, H., Adrian, L., and Steiof, M., 'Dechlorination of PCE in the presence of $Fe^o$enhanced by a mixed culture containing two Dehalococcoides strains,' Chemosphere, 55(5), 661-669(2004) https://doi.org/10.1016/j.chemosphere.2003.11.053
  18. Yang, Y., Pesaro, M., Sigler, W., and Zeyer, J., 'Identification of microorganisms involved in reductive dehalogenation of chlorinate ethenes in an anaerobic microbial community,' Water Res., 39(16), 3954-3960(2005) https://doi.org/10.1016/j.watres.2005.07.010
  19. Kim, H.-J., Goltz, M. N., Cho, K.-S., Khim, J.-H., Kim, J.-Y., and Park, J.-W., 'Sorption and biodegradation of vapor phase organic compounds with wastewater sludge and food waste compost,' J. Air. Waste. Manag. Assoc., 51(8), 174-185(2001)
  20. Kao, C. M. and Lei, S. E., 'Using a peat biobarrier to remediate PCE/TCE contaminated aquifers,' Water Res., 34(3), 835- 845(2000) https://doi.org/10.1016/S0043-1354(99)00213-4
  21. Deitsch, J. J., Smith, J. A., Arnold, M. B., and Bolus, J., 'Sorption and desorption rates of carbon tetrachloride and 1,2-Dichlorobenzene to three organobentonites and a natural peat soil,' Environ. Sci. Technol., 32(20), 3196-3177(1998)
  22. Loeffler, F. E., Tiedje, J. M., and Sanford, R. A., 'Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology,' Appl. Environ. Microbiol., 65(9), 4049-4056(1999)
  23. Lorah, M. M. and Olsen, L. D., 'Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence,' Environ. Sci. Technol., 33(2), 227-234(1999) https://doi.org/10.1021/es980503t
  24. Kassenga, G., Pardue, J. H., Moe, W. M., and Bowman Bowman, K. S., 'Hydrogen thresholds as indicators of dehalorespiration in constructed threatment wetlands,' Environ. Sci. Technol., 38(4), 1024-1030(2006) https://doi.org/10.1021/es0348391
  25. Daniels, L., Belay N., Rajagopal, B. S., and Weimer, P. J., 'Bacterial methanogenesis and growth from $CO_2$ with elemental iron as the sole source of electrons,' Science, 31(237), 509-511(1987) https://doi.org/10.1126/science.31.796.509