• Title/Summary/Keyword: zero properties

Search Result 808, Processing Time 0.028 seconds

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

Defects and Grain Boundary Properties of Cr-doped ZnO (Cr을 첨가한 ZnO의 결함과 입계 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.949-955
    • /
    • 2009
  • In this study, we investigated the effects of Cr dopant (1.0 at% $Cr_2O_3$ sintered at $1000^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and interface state levels of ZnO using dielectric functions ($Z^*$, $M^*$, $Y^*$, $\varepsilon^*$, and $tan{\delta}$), admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). For the identification of the bulk trap levels, we examine the zero-biased admittance spectroscopy and dielectric functions as a function of frequency and temperature. Impedance and electric modulus spectroscopy is a powerful technique to characterize grain boundaries of electronic ceramic materials as well. As a result, three kinds of bulk defect trap levels were found below the conduction band edge of ZnO in 1.0 at% Cr-doped ZnO (Cr-ZnO) as 0.11 eV, 0.21 eV, and 0.31 eV. The overlapped defect levels ($Zn^{..}_i$ and $V^{\cdot}_0$) in admittance spectra were successfully separated by the combination of dielectric function such as $M^*$, $\varepsilon^*$, and $tan{\delta}$. In Cr-ZnO, the interfacial state level was about 1.17 eV by IS and MS. Also we measured the resistance ($R_{gb}$) and capacitance ($C_{gb}$) of grain boundaries with temperature using impedance-modulus spectroscopy. It have discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z"-logf plots with temperature.

Surface Modification with Atmospheric Microwave Agron Plasma Jet Assisted with Admixture of H2O2 and Analysis of Plasma Characteristics

  • Won, I.H.;Shin, H.K.;Kwon, H.C.;Kim, H.Y.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.544-545
    • /
    • 2013
  • Recently, low-temperature atmospheric-pressure plasmas have been investigated [1,2] for biomedical applications and surface treatments. Experiments for improving hydrophilicity of stainless steel (SUS 304) plate with atmospheric microwave argon and H2O2 mixture plasma jet [3] were carried out and experimental measurements and plasma simulations were conducted for investigating the characteristics of plasma for the process. After 30 s of low power (under 10 W) and low temperature (under $50^{\circ}C$) plasma treatment, the water contact angle decreased rapidly to around $10^{\circ}$ from $75^{\circ}$ and was maintained under $30^{\circ}$ for a day (24 hours). The surface free energy, calculated from the contact angles, increased. The chemical properties of the surface were examined by X-ray Photoelectron Spectroscopy (XPS) and the surface morphology and roughness were examined by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. The characteristics of plasma sources with several frequencies were investigated by Optical Emission Spectroscopy (OES) measurement and one-dimensional Particle-in-Cell (PIC) simulation and zero-dimensional global simulation [4]. The relation between plasma components and the efficacy of the surface modification were discussed.

  • PDF

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

Experimental and numerical investigations on axial crushing of square cross-sections tube with vertical wave

  • Eyvazian, Arameh;Eltai, Elsadig;Musharavati, Farayi;Taghipoor, Hossein;Sebaey, T.A.;Talebizadehsardari, Pouyan
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.119-141
    • /
    • 2020
  • In this paper, wavy square absorbers were experimentally and numerically investigated. Numerical simulations were performed with LS-Dyna software on 36 wavy absorbers and their crushing properties were extracted and compared with the simple one. The effect of different parameters, including wave height, wave depth, and wave type; either internal or external on the crushing characteristics were also investigated. To experimentally create corrugation to validate the numerical results, a set of steel mandrel and matrix along with press machines were used. Since the initial specimens were brittle, they were subjected to heat treatment and annealing to gain the required ductility for forming with mandrel and matrix. The annealing of aluminum shells resulted in a 76%increase in ultimate strain and a 60% and 56% decrease in yield and ultimate stresses, respectively. The results showed that with increasing half-wave height in wavy square absorbers, the maximum force was first reduced and then increased. It was also found that in the specimen with constant diameter and half-wave depth, an increment in the half-wave height led to an initial increase in efficiency, followed by a decline. According to the conducted investigations, the lowe maximum force can be observed in the specimen with zero half-wave depth as compared to those having a depth of 1 cm.

The Stochastic Hydrological Analysis for the Discharge of River Rhine at Lobith (For River Rhine at Lobith in the Netherlands) (라인강 유량의 추계학적 수문분석에 관한 연구 (네덜란드의 Lobith지점을 중심으로))

  • 최예환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.4
    • /
    • pp.46-52
    • /
    • 1981
  • The aim at this study has the stochastic hydrological analysis for the annual mean discharge and monthly discharge which were observed at Lobith of River Rhine in the Netherlands from 1901 to 1972. After this study was analysed by computer IBM 370 and Hewlett Parkard 9800, the results were as follows; 1.When 72 data was divided into two groups of subsample data as 36 data, they do not have their properties to be non-homogeneous and inconsistent due to F-test and t-test. 2.The credit limits of the serial correlation coefficient was fluctuated $\pm$0. 231 which was shown in Fig. 3. at significant level 99% by Anderson's test. 3.The correlogram at short term was shown to be no short-term persistence as Fig. 3. 4.Since the correlogram at long term has displayed that Hurst's coefficient was 0.6144 between 0.6 and 0.7, it was to be no long-term persistence. 5.The stochastic model with annual discharge of this River Rhine was shown with $\chi$t=2195+483. 8 $\varepsilon$t as $\chi$t=$\mu$+oet and $\varepsilon$t=$_1$ø$\varepsilon$t-$_1$+ζt where t=1,2,3,..., ζt is an independent series with mean zero and variance (1-ø2), $\varepsilon$t is the dependent series, and 4' is the parameter of the model. 6.The serial correlation coefficient of monthly discharge was explained as $\chi$$_1$ = 0.34 . sin(6-$\pi$t+$\pi$) as Fig.4. and the River Rhine has no large fluctuation and smoothly changed during that time.

  • PDF

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

Buccal Delivery of [D-Ala2, D-Leu5]Enkephalin Incorporated in Mucoadhesive Poly(acrylic acid) Hydrogels

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Kang, Kyoung-Hoon;Nam, Dae-Young;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.5
    • /
    • pp.369-373
    • /
    • 2005
  • The objectives of the current work is to understand the factors impacting the formulation and performance of a Carbopol mucoadhesive buccal delvery system for a model peptide drug, $[D-Ala{^2},\;D-Leu{^5}]$enkephalin (DADLE, Mw=569.7) with comparable chemical and enzymatic stability. Specifically, in vitro buccal DADLE delivery from the cross-linked poly(acrylic acid) (PAA) hydrogel system was characterized. In addition, the influences of several penetration enhancers on the ex vivo buccal absorption of DADLE were also studied. In this study, the PAA hydrogels generally swell to 100% of their original weight in the phosphate pH 7.4 buffer. The water penetration into the PAA hydrogel occurred based on a zero-order kinetics for the first 60 min and steadily decreased afterwards. From the release study, it can be seen that the initial DADLE release was so rapid and the rate of release of DADLE decreased as the time elapsed. The porcine buccal tissue was found to be permeable to DADLE with a flux value of $0.07%/cm{^2}/hr({\pm}0.01\;SD)$. From the ex vivo diffusion study, it was found that sodium taurodihydrofusidate showed a greater degree of enhancement compared to the phospholipids with an Enhancement Ratio (ER) of 8.7 compared to 2.7 and 1.9 for didecanoylphosphatidylcholine and lysophosphatidylcholine, respectively. The work encompassed within this paper has demonstrated the feasibility of using the PAA hydrogel delivery system with its good mucoadhesive properties for the buccal delivery of peptides.

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.