DOI QR코드

DOI QR Code

Defects and Grain Boundary Properties of Cr-doped ZnO

Cr을 첨가한 ZnO의 결함과 입계 특성

  • 홍연우 (한국세라믹기술원 IT융합팀) ;
  • 신효순 (한국세라믹기술원 IT융합팀) ;
  • 여동훈 (한국세라믹기술원 IT융합팀) ;
  • 김종희 (한국세라믹기술원 IT융합팀) ;
  • 김진호 (경북대학교 신소재공학부)
  • Published : 2009.11.01

Abstract

In this study, we investigated the effects of Cr dopant (1.0 at% $Cr_2O_3$ sintered at $1000^{\circ}C$ for 1 h in air) on the bulk trap (i.e. defect) and interface state levels of ZnO using dielectric functions ($Z^*$, $M^*$, $Y^*$, $\varepsilon^*$, and $tan{\delta}$), admittance spectroscopy (AS), and impedance-modulus spectroscopy (IS & MS). For the identification of the bulk trap levels, we examine the zero-biased admittance spectroscopy and dielectric functions as a function of frequency and temperature. Impedance and electric modulus spectroscopy is a powerful technique to characterize grain boundaries of electronic ceramic materials as well. As a result, three kinds of bulk defect trap levels were found below the conduction band edge of ZnO in 1.0 at% Cr-doped ZnO (Cr-ZnO) as 0.11 eV, 0.21 eV, and 0.31 eV. The overlapped defect levels ($Zn^{..}_i$ and $V^{\cdot}_0$) in admittance spectra were successfully separated by the combination of dielectric function such as $M^*$, $\varepsilon^*$, and $tan{\delta}$. In Cr-ZnO, the interfacial state level was about 1.17 eV by IS and MS. Also we measured the resistance ($R_{gb}$) and capacitance ($C_{gb}$) of grain boundaries with temperature using impedance-modulus spectroscopy. It have discussed about the stability and homogeneity of grain boundaries using distribution parameter ($\alpha$) simulated with the Z"-logf plots with temperature.

Keywords

References

  1. G. Neumann, 'Current Topics in Materials Science Vol. 7', North-Holland, Amsterdam, p. 153, 1981
  2. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, 'Recent progress in processing and properties of ZnO', Superlattices and Microstructures, Vol. 34, No. 1-2, p. 3, 2003 https://doi.org/10.1016/S0749-6036(03)00093-4
  3. F. A. Kroger, 'The Chemistry of Imperfect Crystals, Vol. 2', North-Holland, Amsterdam, p. 743, 1974
  4. K. I. Hagemark, 'Defect structure of Zn-doped ZnO', J. Solid State Chem., Vol. 16, No. 3-4, p. 293, 1976 https://doi.org/10.1016/0022-4596(76)90044-X
  5. M. H. Sukker and H. L. Tuller, 'Advances in Ceramics, Vol. 7', Am. Ceram. Soc., Columbus, p. 71, 1983
  6. J. Han, P. Q. Mantas, and A. M. R. Senos, 'Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO', J. Euro. Ceram. Soc., Vol. 22, No. 1, p. 49, 2002 https://doi.org/10.1016/S0955-2219(01)00241-2
  7. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, 'Bound exciton and donor-acceptor pair recombinations in ZnO', Phys. Stat. Sol. B, Vol. 241, No. 2, p. 231, 2004 https://doi.org/10.1002/pssb.200301962
  8. K. Sato and H. Katayama-Yoshida, 'First principles materials design for semiconductor spintronics', Semicond. Sci. Technol., Vol. 17, No. 4, p. 367, 2002 https://doi.org/10.1088/0268-1242/17/4/309
  9. S. Singh, E. S. Kumar, and M. S. Ramachandra Rao, 'Microstructural, optical and electrical properties of Cr-doped ZnO', Scripta Materialia, Vol. 58, No. 10, p. 866, 2008 https://doi.org/10.1016/j.scriptamat.2008.01.008
  10. F. Greuter and G. Blatter, 'Electrical properties of grain boundaries in polycrystalline compound semiconductors', Semicond. Sci. Technol., Vol. 5, No. 2, p. 111, 1990 https://doi.org/10.1088/0268-1242/5/2/001
  11. R. Gerhardt, 'Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity', J. Phys. Chem. Solids, Vol. 55, No. 12, p. 1491, 1994. https://doi.org/10.1016/0022-3697(94)90575-4
  12. M. Andres-Verges and A. R. West, 'Impedance and modulus spectroscopy of ZnO varistors', J. Electroceram., Vol. 1, No. 2, p. 125, 1997 https://doi.org/10.1023/A:1009906315725
  13. 홍연우, 신효순, 여동훈, 김종희, 김진호, '$ZnO-Bi_2O_3- Sb_2O_3$ 세라믹스의 전기적 특성', 전기전자재료학회논문지, 21권, 8호, p. 738, 2008 https://doi.org/10.4313/JKEM.2008.21.8.738
  14. K. A. Abdullah, A. Bui, and A. Loubiere, 'Low frequency and low temperature behavior of ZnO-based varistor by ac impedance measurements', J. Appl. Phys., Vol. 69, No. 7, p. 4046, 1991 https://doi.org/10.1063/1.348414
  15. Y. W. Hong and J. H. Kim, 'The electrical properties of $Mn_3O_4$-doped ZnO', Ceramics International, Vol. 30, No. 7, p. 1301, 2004 https://doi.org/10.1016/j.ceramint.2003.12.028