• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.02 seconds

Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation (화학 평형과 열복사를 포함한 로켓 플룸 유동 해석)

  • Shin Jae-Ryul;Choi Jeong-Yeol;Choi Hwan-Seck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • Numerical study is carried out to investigate the effects of chemistry and thermal radiation on the rocket plume flow field at various altitudes. Navier-Stokes equations for compressible flows were solved by a fully-implicit TVD code based on the finite volume method. An infinitely fast chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thick media were incorporated with the fluid dynamics code. The plume flow fields of a kerosene-fueled rocket flying at Mach number zero at sea-level, 1.16 at altitude of 5.06 km and 2.90 at 17.34 km were numerically analyzed. Results showed the plume structures at different altitude conditions with the effects of chemistry and radiation. It is understood that the excess temperature by the chemical reactions in the exhaust gas may not be ignored in the view point of propulsion performance and thermal protection of the rocket base, especially at higher altitude conditions.

Nonlinear Kalman filter bias correction for wind ramp event forecasts at wind turbine height

  • Xu, Jing-Jing;Xiao, Zi-Niu;Lin, Zhao-Hui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.393-403
    • /
    • 2020
  • One of the growing concerns of the wind energy production is wind ramp events. To improve the wind ramp event forecasts, the nonlinear Kalman filter bias correction method was applied to 24-h wind speed forecasts issued from the WRF model at 70-m height in Zhangbei wind farm, Hebei Province, China for a two-year period. The Kalman filter shows the remarkable ability of improving forecast skill for real-time wind speed forecasts by decreasing RMSE by 32% from 3.26 m s-1 to 2.21 m s-1, reducing BIAS almost to zero, and improving correlation from 0.58 to 0.82. The bias correction improves the forecast skill especially in wind speed intervals sensitive to wind power prediction. The fact shows that the Kalman filter is especially suitable for wind power prediction. Moreover, the bias correction method performs well under abrupt weather transition. As to the overall performance for improving the forecast skill of ramp events, the Kalman filter shows noticeable improvements based on POD and TSS. The bias correction increases the POD score of up-ramps from 0.27 to 0.39 and from 0.26 to 0.38 for down-ramps. After bias correction, the TSS score is significantly promoted from 0.12 to 0.26 for up-ramps and from 0.13 to 0.25 for down-ramps.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh;Mellal, Fatma;Nebab, Mokhtar;Fourn, Hocine;Benadouda, Mourad;Atmane, Hassen Ait;Tounsi, Abdelouahed;Hussain, Muzamal
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.447-460
    • /
    • 2022
  • In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour;Reza Raoufi;Ehsan Kazeminezhad
    • Earthquakes and Structures
    • /
    • v.25 no.3
    • /
    • pp.187-198
    • /
    • 2023
  • Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

Has Container Shipping Industry been Fixing Prices in Collusion?: A Korean Market Case

  • Jaewoong Yoon;Yunseok Hur
    • Journal of Korea Trade
    • /
    • v.27 no.1
    • /
    • pp.79-100
    • /
    • 2023
  • Purpose - The purpose of this study is to analyze the market power of the Korea Container Shipping Market (Intra Asia, Korea-Europe, and Korea-U.S.) to verify the existence of collusion empirically, and to answer whether the joint actions of liner market participants in Korea have formed market dominance for each route. Precisely, it will be verified through the Lerner index as to whether the regional market of Asia is a monopoly, oligopoly, or perfect competition. Design/methodology - This study used a Lerner index adjusted with elasticity presented in the New Imperial Organization (NEIO) studies. NEIO refers to a series of empirical studies that estimate parameters to judge market power from industrial data. This study uses B-L empirical models by Bresnahan (1982) and Lau (1982). In addition, NEIO research data statistically contain self-regression and stability problems as price and time series data. A dynamic model following Steen and Salvanes' Error Correction Model was used to solve this problem. Findings - The empirical results are as follows. First, λ, representing market power, is nearly zero in all three markets. Second, the Korean shipping market shows low demand elasticity on average. Nevertheless, the markup is low, a characteristic that is difficult to see in other industries. Third, the Korean shipping market generally remains close to perfect competition from 2014 to 2022, but extreme market power appears in a specific period, such as COVID-19. Fourth, there was no market power in the Intra Asia market from 2008 to 2014. Originality/value - Doubts about perfect competition in the liner market continued, but there were few empirical cases. This paper confirmed that the Korea liner market is a perfect competition market. This paper is the first to implement dynamics using ECM and recursive regression to demonstrate market power in the Korean liner market by dividing the shipping market into Deep Sea and Intra Asia separately. It is also the first to prove the most controversial problems in the current shipping industry numerically and academically.

US, China and the Russo-Ukraine War: The Conditions for Generating a Mutually Perceived Hurting Stalemate and Consequent Ceasefire In Moscow and Kyiv

  • Benedict E. DeDominicis
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.177-192
    • /
    • 2023
  • A prerequisite for a lasting ceasefire is the emergence of a prevailing view in Moscow and Kyiv that the fighting has reached a hurting stalemate. In sum, they both lose more through continuing warfare than by a ceasefire. This study applies social identity dynamics of nationalism to this escalatory conflict. It generates findings that imply that China as a third-party great power intervening mediator can potentially play a pivotal role. Shifting the respective prevailing views in Moscow and Kyiv of their interaction from a zero-sum foundation requires proffering powerful economic and political third-party incentives. Effective inducement would facilitate national defense, development and prestige for Moscow as well as Kyiv. China arguably has the underutilized potential power capabilities necessary to alter the respective prevailing views of strategic relationships among the great powers within Moscow, Brussels and Washington. A prerequisite for success in striving effectively towards this strategic goal is cooperation with the Beijing despite skepticism from Washington. This study utilizes a process tracing methodological approach. It highlights that the foundations of the Russo-Ukraine war lie in the institutionalization within Euro-Atlantic integration of the Cold War assumption that the USSR was an imperialist revisionist actor. Russia is the USSR's successor state. Moscow's prevailing view is that Russian national self-determination was unjustly circumscribed in the multinational Soviet totalitarian Communist system. The Euro-Atlantic community is perceived as a neocolonial imperial threat by allying with post-1991 Ukrainian nationalism at Russia's expense. The study finds that acknowledging Eurasian regional multipolarity is necessary, if not sufficient, to coopt Beijing into a global political stabilization strategy. It functionally aims to promote international balancing to lessen potentials for horizontal as well as vertical escalation of the Russo-Ukrainian conflict.

A study on the fire impact of Pentane outdoor storage tank (Pentane 옥외저장탱크의 화재 영향 검토에 대한 연구)

  • Eun-Ji Kim;Sung-Seek Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.64-70
    • /
    • 2024
  • Fire prediction, response and assessment for outdoor storage tanks are essential to disaster management because they have significant human, social and environmental impacts. Therefore, in this study, the fire situation an outdoor storage tank was simulated and the effects of fire on the radiant heat flux were analyzed concerning tank height and fire occurrence time. tank height and fire occurrence time. For this purpose, fire scenarios and specifications of the outdoor storage tank were set, and a study was carried out considered height, fire occurrence time and the operating or non-operating of a water spray system in outdoor storage tanks containing large amounts of Pentane using FDS (Fire Dynamics Simulator). As a results, the radiant heat flux was reduced by more than 50% depending on whether the water spray system was m operating or not. When the water spray system was in operation, the maximum radiant heat flux was 13.75 kW/m2 at a tank height of 14 m, and when the water spray system was not 117 operation, the maximum radiant heat flux was 25.14 kW/m2 at the same tank height. Additionally, it was found that when the water spray system was in operation, the radiant heat flux was 50% lower than when the water spray system was not in operation.