DOI QR코드

DOI QR Code

On wave dispersion properties of functionally graded plates resting on elastic foundations using quasi-3D and 2D HSDT

  • Bennai, Riadh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Mellal, Fatma (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Nebab, Mokhtar (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Fourn, Hocine (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benadouda, Mourad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Atmane, Hassen Ait (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
  • Received : 2020.12.29
  • Accepted : 2022.04.18
  • Published : 2022.05.25

Abstract

In this article, wave propagation in functional gradation plates (FG) resting on an elastic foundation with two parameters is studied using a new quasi-three-dimensional (3D) higher shear deformation theory (HSDT). The new qausi-3D HSOT has only five variables in fields displacement, which means has few numbers of unknowns compared with others quasi-3D. This higher shear deformation theory (HSDT) includes shear deformation and effect stretching with satisfying the boundary conditions of zero traction on the surfaces of the FG plate without the need for shear correction factors. The FG plates are considered to rest on the Winkler layer, which is interconnected with a Pasternak shear layer. The properties of the material graded for the plates are supposed to vary smoothly, with the power and the exponential law, in the z-direction. By based on Hamilton's principle, we derive the governing equations of FG plates resting on an elastic foundation, which are then solved analytically to obtain the dispersion relations. Numerical results are presented in the form of graphs and tables to demonstrate the effectiveness of the current quasi-3D theory and to analyze the effect of the elastic foundation on wave propagation in FG plates.

Keywords

References

  1. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  2. Aminipour, H. and Janghorban, M. (2017), "Wave propagation in anisotropic plates using trigonometric shear deformation theory", Mech. Adv. Mater. Struct., 24(13), 1135-1144. https://doi.org/10.1080/15376494.2016.1227500.
  3. Aminipour, H., Janghorban, M. and Li, L. (2018), "A new model for wave propagation in functionally graded anisotropic doubly-curved shells", Compos. Struct., 190, 91-111. https://doi.org/10.1016/j.compstruct.2018.02.003.
  4. Ait Atmane, R., Mahmoudi, N. and Bennai, R., Ait Atmane, H., Tounsi, A. (2021), « Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., 39(1), 95-107. https://doi.org/10.12989/SCS.2021.39.1.095
  5. Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Communications, 79, 51-62. http://dx.doi.org/10.1016/j.mechrescom.2017.01.004.
  6. Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
  7. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  8. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H. A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
  9. Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct., 73, 125-136. https://doi.org/10.1016/j.jfluidstructs.2017.06.007.
  10. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699
  11. Bennai, R., Fourn, H., Ait Atmane, H., Tounsi, A., and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
  12. Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. http://dx.doi.org/10.12989/eas.2016.10.6.1429.
  13. Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Composite Structures, 113223. http://doi.org/10.1016/j.compstruct.2020.113223.
  14. Bodaghi, M. and Saidi, A.R. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Modelling. 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
  15. Chakraborty, A. and Gopalakrishnan, S. (2004), "A higher-order spectral element for wave propagation analysis in functionally graded materials", Acta Mechanica, 172(1-2), 17-43. https://doi.org/10.1007/s00707-004-0158-2.
  16. Chandra, N., Raja, S. and Nagendra Gopal, K.V. (2014), "Vibro-acoustic response and sound transmission loss analysis of functionally graded plates", J. Sound Vib., 333(22), 5786-5802.https://doi.org/10.1016/j.jsv.2014.06.031.
  17. Cinefra, M., Belouettar, S., Soave, M. and Carrera, E. (2010), "Variable kinematic models applied to free-vibration analysis of functionally graded material shells", European J. Mech. A/Solids, 29(6), 1078-1087. https://doi.org/10.1016/j.euromechsol.2010.06.001.
  18. Cukanovic, D., Radakovic, A., Bogdanovic, G., Milanovic, M., Redzovic, H. and Dragovic, D. (2018), "New Shape Function for the Bending Analysis of Functionally Graded Plate", Materials (Basel), 11(12), 2381. https://doi.org/10.3390/ma11122381.
  19. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R., Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. http://dx.doi.org/10.12989/eas.2019.16.1.055
  20. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  21. Dinh Duc, N. and Hong Cong, P. (2016), "Nonlinear thermo-mechanical dynamic analysis and vibration of higher order shear deformable piezoelectric functionally graded material sandwich plates resting on elastic foundations", J. Sandwich Struct. Mater., 20(2), 191-218. https://doi.org/10.1177/1099636216648488.
  22. Du, J., Jin, X., Wang, J. and Xian, K. (2007), "Love wave propagation in functionally graded piezoelectric material layer", Ultrasonics, 46(1), 13-22. https://doi.org/10.1016/j.ultras.2006.09.004.
  23. Ebrahimi, F. and Dabbagh, A. (2017), "Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradientbased surface piezoelectricity theory", European Phys. J. Plus, 132(11). https://doi.org/10.1140/epjp/i2017-11694-2.
  24. Ghahnavieh, S., Hosseini-Hashemi, S., Rajabi, K. and Ghahnavieh, S. (2018), "A higher-order nonlocal strain gradient mass sensor based on vibrating heterogeneous magneto-electro-elastic nanoplate via third-order shear deformation theory", European Phys. J. Plus, 133(12), 1-21. https://doi.org/10.1140/epjp/i2018-12338-9.
  25. Ghorbanpour Arani, A., Jamali, M., Mosayyebi, M. and Kolahchi, R. (2016), "Analytical modeling of wave propagation in viscoelastic functionally graded carbon nanotubes reinforced piezoelectric microplate under electro-magnetic field", Proc. Institution Mech. Eng. Part N: J. Nanomater., Nanoeng. Nanosyst., 231(1), 17-33. https://doi.org/10.1177/1740349915614046.
  26. He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", J. Solids Struct., 38(9), 1641-1655.https://doi.org/10.1016/S0020-7683(00)00050-0.
  27. Jahromi, H.N., Aghdam, M.M. and Fallah, A. (2013), "Free vibration analysis of Mindlin plates partially resting on Pasternak foundation", J. Mech. Sci., 75 1-7. https://doi.org/10.1016/j.ijmecsci.2013.06.001.
  28. Jedrysiak, J. and Kazmierczak-Sobinska, M. (2015), "On free vibrations of thin functionally graded plate bands resting on an elastic foundation", J. Theoretical Appl. Mech., 629.https://doi.org/10.15632/jtam-pl.53.3.629.
  29. Katariya, P.V. and Panda, S.K. (2019), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/sem.2019.71.6.657.
  30. Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
  31. Kudela, P., Zak, A., Krawczuk, M. and Ostachowicz, W. (2007), "Modelling of wave propagation in composite plates using the time domain spectral element method", J. Sound Vib., 302(4-5), 728-745. https://doi.org/10.1016/j.jsv.2006.12.016.
  32. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  33. Mantari, J.L. and Guedes Soares, C. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B: Eng., 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.
  34. Matsunaga, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", J. Mech. Sci., 49(9), 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008.
  35. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2016), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandwich Struct. Mater., 19(6), 736-769. https://doi.org/10.1177/1099636216643425.
  36. Najafi, F., Shojaeefard, M.H. and Saeidi Googarchin, H. (2016), "Nonlinear low-velocity impact response of functionally graded plate with nonlinear three-parameter elastic foundation in thermal field", Compos. Part B: Eng., 107, 123-140. https://doi.org/10.1016/j.compositesb.2016.09.070.
  37. Nami, M.R. and Janghorban, M. (2014), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Modern Phys. Lett. B, 28(03), 1450021. https://doi.org/10.1142/s0217984914500213.
  38. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511
  39. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019b), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  40. Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019a), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arabian J. Geosci., 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5.
  41. Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.
  42. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidiscipline Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/mmms-08-2017-0082
  43. Panjehpour, M., Eric Woo Kee Loh, Deepak, TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends in civil Engineering and its architecture, 3(1) 336-340. https://doi.org/10.32474/tceia.2018.03.000151
  44. Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
  45. Rabia, B., Daouadji, T.H., Abderezak, R. (2019), "Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate", Earthq. Struct., 16(5), 601-609. http://dx.doi.org/10.12989/eas.2019.16.5.601
  46. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical Analysis of Functionally Graded Cylinders and Plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  47. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  48. Tajeddini, V., Ohadi, A. and Sadighi, M. (2011), "Three-dimensional free vibration of variable thickness thick circular and annular isotropic and functionally graded plates on Pasternak foundation", J. Mech. Sci., 53(4), 300-308. https://doi.org/10.1016/j.ijmecsci.2011.01.011.
  49. Tan, P., Nguyen-Thanh, N., Rabczuk, T. and Zhou, K. (2018), "Static, dynamic and buckling analyses of 3D FGM plates and shells via an isogeometric-meshfree coupling approach", Compos. Struct., 198, 35-50. https://doi.org/10.1016/j.compstruct.2018.05.012.
  50. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 407. https://doi.org/10.1007/s42452-020-2182-9.
  51. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  52. Viola, E., Tornabene, F. and Fantuzzi, N. (2013), "General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels", Compos. Struct., 95, 639-666. https://doi.org/10.1016/j.compstruct.2012.08.005.
  53. Xiang, S., Kang, G. and Liu, Y. (2014), "A nth-order shear deformation theory for natural frequency of the functionally graded plates on elastic foundations", Compos. Struct., 111, 224-231. https://doi.org/10.1016/j.compstruct.2014.01.004.
  54. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/CAC.2020.26.2.107.
  55. Yu, J., Wu, B. and He, C. (2010), "Guided thermoelastic waves in functionally graded plates with two relaxation times", J. Eng. Sci., 48(12), 1709-1720. https://doi.org/10.1016/j.ijengsci.2010.10.002.