DOI QR코드

DOI QR Code

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna

전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석

  • Received : 2019.08.02
  • Accepted : 2019.09.25
  • Published : 2019.10.01

Abstract

Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

전개형 반사판 안테나의 전개거동 특성을 해석적 그리고 실험적 방법으로 분석하고자 한다. Kane 방정식을 이용하여 전개형 안테나의 다물체 운동방정식을 공식화하였다. 복합재료 반사판의 구조변형 특성을 살펴보기 위해 FSDT(First-order Shear Deformation Theory)를 이용하여 빔 모델로 유한요소 정식화 하였다. 역진자 모델을 이용하여 안테나 전개시간에 따른 스프링 상수 그리고 댐핑 계수들을 결정하였다. 다물체 동력학 해석을 통하여 설계변수에 따른 안테나 반사판의 동적구조 특성을 확인하였고, 무중력 모사 전개실험을 통하여 해석결과 검증 및 거동특성을 실험적으로 관찰하였다.

Keywords

References

  1. Hwang, K. T., Cho, C. L., Lee, D. W., Lee, S. H., and Moon. G. W., "System Alignment Technology in Korea Multi-Purpose Satellite," Current Industrial and Technological Trends in Aerospace, Vol. 11, No. 1, 2013, pp. 83-92.
  2. Gulyaev, V. I., Gaidaichuk, V. V. E., Chernyavskii, A. G., and Scialino, L., "Dynamic Behavior of a Large Deployable Reflector," International applied mechanics, Vol. 39, No. 9, 2003, pp. 1084-1088. https://doi.org/10.1023/B:INAM.0000008218.20629.4f
  3. Kane, T. R., and Levinson, D. A., "Formulation of Equations of Motion for Complex Spacecraft," Journal of Guidance and Control, Vol. 3, No. 2, 1980, pp. 99-112. https://doi.org/10.2514/3.55956
  4. Stoneking, E., "Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies," In AIAA Guidance, Navigation, and Control (GNC) Conference, 2013, p. 4649.
  5. Park, J. H., Yoo, H. H., Hwang, Y. H., and Bae, D. S., "Dynamic Analysis of Constrained Multibody System using Kane's method," Transactions A of The Korean Society of Mechanical Engineers, Vol. 21, No. 2, 1997, pp. 2156-2164.
  6. Heffernan, N. F., "A multibody dynamic analysis of the N-ROSS satellite rotating flexible reflector using Kane's method," Doctoral dissertation, 1987.
  7. Zhou, X., "Dynamics Modeling and Analysis of Spacecraft Antenna Based on Kane Method," 2nd International Conference on System, Computing, and applications, 2018, pp. 285-293.
  8. Choi, J. S., Moon, S. M., Yoon, Y. S., Kim, H. W., and Choi, S. B., "Deployable Communication Antenna Alignment for Geostationary Satellite," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 3, 2011, pp. 279-288. https://doi.org/10.5139/JKSAS.2010.39.3.279
  9. Alberto, M., L. Di Cicco, Riccardo, R., and Davide, S., "Large reflector technologies at TAS-I," 3rd International conference Advanced Lightweight Structures and Reflector Antennas, 2018.
  10. Schmid, M., and Barho, R., "Development summary and test results of a 3 meter unfurlable CFRP Skin Antenna Reflector," In 10th European Space Mechanisms and Tribology Symposium, Vol. 524, 2003, pp. 145-151.
  11. Amirouche, F., Fundamentals of Multibody Dynamics: theory and application, Birkhauser Boston, New York, 2006.