• Title/Summary/Keyword: zeolites

Search Result 263, Processing Time 0.023 seconds

Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation (MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향)

  • Song, Ki Won;Seo, Gon;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.521-529
    • /
    • 2011
  • Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of $C_3-C_9$ were mainly produced on MWW, while the yield of $C_2{^=}$ and aromatics were high on MFI. Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.

Characterization of $NH_4\;^+$ and $Zn^{2+}$ Adsorption by Korean Natural Zeolites (한국산(韓國産) 천연(天然) 제오라이트의 암모늄과 아연이온의 흡착(吸着)특성)

  • Kang, Shin-Jyung
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.386-392
    • /
    • 1989
  • The adsorption of $NH_4\;^+$ and $Zn^{2+}$ by four Korean zeolites, the major species of which are clinoptilolite, clinoptilolite with mordenite, mordenite with clinoptilolite, and mordenite was measured in different concentrations of solutions of $NH_4\;^+$ and $Zn^{2+}$, and their mixtures. The adsorption of $NH_4\;^+$ was greater than that $Zn^{2+}$ far all samples at the concentrations of the added solutions from $1\;to\;7{\times}10^{-3}N$ and this difference was greater at the higher concentrations. Also, $Zn^{2+}$ adsorption by samples was decreased by the presence of $NH_4\;^+$, but that of $NH_4\;^+$ by the presence of $Zn^{2+}$ was not. The extent of $NH_4\;^+$ selectivity among samples was increased in order of clinoptilolite with mordenite$NH_4\;^+$ adsorbed by six successive equilibrations with the solution containing both $NH_4\;^+$ and $Zn^{2+}$ each at a concentration of $3{\times}10^{-3}N$ were in range from 43.7 to 50.4 me/100g, whereas those amounts of $Zn^{2+}$ were in the range from 6.6 to 17.0 me/100g. It was suggested from these results that mordenite and clinoptilolite, particularly the former, can be used for removal of $NH_4\;^+$ from municipal wastewater and those zeolites treated with wastewater can be applied to agricultural land.

  • PDF

Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite (Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론)

  • Park, Jung-Hyun;Jeon, Seong-Hee;Van Khoa, Nguyen;Shin, Chae-Ho
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • Iron-containing TNU-9 zeolites were prepared by aqueous ion exchange in the range of Fe contents 0.6~3.3 wt%. Direct decomposition of $N_2O$ was performed varying $N_2O$ concentrations and reaction temperatures. Fe-TNU-9 zeolites used were characterized using XRD, $N_2$ sorption, SEM/EDX. A 2.7 wt% Fe-TNU-9 zeolite showed high activities and above this contents of Fe the effect of catalytic activity was little dominated. Fe-TNU-9 zeolites after ion exchange conserved their TNU-9 structure although the degree of crystallinity was decreased until ca. 60% in 3.1 wt% Fe-TNU-9 zeolite after ion exchange in 0.01 M Fe solution. The decrease in the degree of crystallinity could be correlated with the decrease of surface area and pore volume. The partial reaction order of $N_2O$ in the decomposition of $N_2O$ was dependent on the reaction temperature from 0.69 at $420^{\circ}C$ to 0.97 at $494^{\circ}C$. The activation energy of $N_2O$ was also dependent on the $N_2O$ concentration and its value is ranged to 34~43 kcal/mol.

Adsorption Characteristics of Nitrogen monoxide over Dealuminated and Alkali/Alkaline-earth Metal ion Exchanged Y-Zeolites (탈알루미늄 및 알칼리/알칼리토금속 양이온을 교환한 Y형 제올라이트의 NO흡착 특성)

  • Kim, Cheol-Hyun;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.17-25
    • /
    • 2005
  • The dealuminated and alkali/alkaline-earth metal exchanged Y-zeolites were prepared as a catalyst. Elemental compositions and structures of the prepared catalysts were analyzed by the various spectroscopic techniques such as inductively coupled plasma-atomic emission spectroscopy(ICP-AES), X-ray fluorescence(XRF) and X-ray diffraction(XRD), and the desorption behaviors of adsorbed species on the catalyst surfaces were investigated via NO-TPD experiment. Comparing with the composition of the starting material of NaY zeolite, the magnitudes of Si/Al ratio in catalytic materials were increased after dealumination. The Si/Al ratio of catalytic materials after dealumination followed by Cs and Ba cation exchange were additionally decreased. Dealumination to catalysts induced a destruction of basic frame due to a detachment of aluminum, which results in reducing framework structure, while increasing non-framework structure. This phenomenon becomes more serious with increasing time of steam treatment and even more significant for the cation exchanged catalysts. In NO-TPD experiments, the desorption peaks of NO which indicates an activity point of catalysts shifted to the low temperature region after dealumination and cation exchange. The desorption peaks of the NO-TPD profiles taken after steam treatment also shifted to the low temperature region as the steam treatment time increased. In dealuminated and cation exchanged Y-zeolites, the catalytic activities were more influenced by exchanged cation and the formation of non-framework structure.

  • PDF

Shape-Selective Catalysis over Zeolite. An Attempt in the Alkylation of Biphenyl

  • Sugi, Yoshihiro;Komura, Kenichi;Kim, Jong Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.235-242
    • /
    • 2006
  • Liquid phase alkylation of biphenyl (BP) was studied over large pore zeolites. Selective formation of the least bulky products, 4,4'-diisopropylbiphenyl (4,4'-DIPB) occurred only in the isopropylation of BP over some large pore molecular sieves. H-mordenites (MOR) gave the highest selectivity among them. The dealumination of MOR enhanced catalytic activity and the selectivity of 4,4'-DIPB because of the decrease of coke-deposition. Non-selective catalysis occurs on external acid sites over MOR with the low $SiO_2/Al_2O_3$ ratio because severe coke-deposition deactivates the acid sites inside the pores by blocking pore openings. The selectivity of DIPB isomers was changed with reaction temperature. Selective formation of 4,4'-DIPB was observed at moderate temperatures such as $250^{\circ}C$, whereas the decrease of the selectivity of 4,4'-DIPB occurred at higher temperatures as $300^{\circ}C$. However, 4,4'-DIPB was almost exclusive isomer in the encapsulated DIPB isomers inside the pores even at high temperatures. These decreases of the selectivity of 4,4'-DIPB are due to the isomerization of 4,4'-DIPB on the external acid sites. Some 12-membered molecular sieves, such as SSZ-24, MAPO-5 (M:Mg, Zn, Si), SSZ-31, and ZSM-12, which have straight channels, gave 4,4'-DIPB with moderate to high selectivity; however; SSZ-55, SSZ-42, and MAPO-36 (M: Mg, Zn) gave lower selectivity because of cages in 12-membered one dimensional channels. Three dimensional H-Y and Beta zeolites also yield 4,4'-DIPB in low yield because of their wide circumstances for the isopropylation of BP. The increasing the size of alkylating agent enhanced the shape-selective alkylaiton even for the zeolites, such as UTD-1. The ethylation of BP to ethylbiphenyls (EBPs) and diethylbiphenyls (DEBPs) over MOR was non-selective. The ethylation of BP to EBPs was controlled kinetically. However, there was difference in reactivity of EBPs and DEBPs for their further ethylation. 4-EBP was ethylated preferentially among the isomers, although the formation of 4,4'-DEBP was less selective. The least bulky 4-EBP and 4,4'-DEBP have the highest reactivity among EBPs and DEBPs for the ethylation to polyethylbiphenyls (PEBPs). These results show that the environments of MOR pores are too loose for shape selective formation of the least bulky isomers, 4-EBP and 4,4'-DEBP in the ethylation of BP, and that MOR pores have enough space for the further ethylation of 4,4'-DEBP.

Comparative Analysis of the Characteristics of Natural Zeolites from Mongolia, Korea, and the United State (몽골, 한국, 미국 천연 제올라이트의 특성 비교 분석)

  • Battsetseg, Bayarsaikhan;Kim, Hu Sik;Kim, Young Hun;Kim, Jeong Jin;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.141-151
    • /
    • 2022
  • The 16 natural zeolites collected from Mongolia (6 types), the United States (1 type), and Korea (9 types) were characterized by XRD, XRF, TGA, DTA, and CEC analysis. All 16 samples are composite minerals. Two or more mineral phases co-exist and consist primarily of minerals such as clinoptilolite, heulandite, mordenite, and chabazite. In certain samples, minerals like illite and quartz were present as impurities. The XRF analysis showed that the 16 natural zeolites contain SiO2, Al2O3, K2O, CaO, Na2O, MgO, and Fe2O3 oxides. The cation exchange capacity of the U-1 sample was 223.3 meg/100 g, which is higher than the rest of the samples. M-6 sample in Mongolian natural zeolite and K-1 sample in Korean natural zeolite showed the highest cation exchange capacity at 166.6 meg/100 g. As a result of thermal differential and thermos gravimetric analysis, all 16 samples showed excellent thermal stability up to 600℃.

Carbon-Silica Membrane for Gas Separation (탄소-실리카막을 이용한 기체분리)

  • Lee, Young-Moo;Park, Ho-Bum
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.77-102
    • /
    • 2004
  • Carbon materials obtained from organic polymers are usually amorphous structure. The structure of carbon materials is not nearly as well defined as that of zeolite. Carbon are amorphous materials with comparatively wide pore size distribution as compared to the crystalline zeolites with monodisperse ultramicropore and micropore dimensions. (omitted)

  • PDF