DOI QR코드

DOI QR Code

Comparative Analysis of the Characteristics of Natural Zeolites from Mongolia, Korea, and the United State

몽골, 한국, 미국 천연 제올라이트의 특성 비교 분석

  • Battsetseg, Bayarsaikhan (Department of Applied Chemistry, Andong National University) ;
  • Kim, Hu Sik (Department of Applied Chemistry, Andong National University) ;
  • Kim, Young Hun (Department of Environmental Engineering, Andong National University) ;
  • Kim, Jeong Jin (Department of Earth and Environmental Science, Andong National University) ;
  • Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
  • Received : 2022.06.10
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

The 16 natural zeolites collected from Mongolia (6 types), the United States (1 type), and Korea (9 types) were characterized by XRD, XRF, TGA, DTA, and CEC analysis. All 16 samples are composite minerals. Two or more mineral phases co-exist and consist primarily of minerals such as clinoptilolite, heulandite, mordenite, and chabazite. In certain samples, minerals like illite and quartz were present as impurities. The XRF analysis showed that the 16 natural zeolites contain SiO2, Al2O3, K2O, CaO, Na2O, MgO, and Fe2O3 oxides. The cation exchange capacity of the U-1 sample was 223.3 meg/100 g, which is higher than the rest of the samples. M-6 sample in Mongolian natural zeolite and K-1 sample in Korean natural zeolite showed the highest cation exchange capacity at 166.6 meg/100 g. As a result of thermal differential and thermos gravimetric analysis, all 16 samples showed excellent thermal stability up to 600℃.

몽골(6종), 미국(1종), 한국(9종)지역에서 채취한 총 16종의 천연 제올라이트를 X-선 회절 분석, X-선 형광 분석, 열 시차, 열 중량 분석 및 양이온 교환능 분석을 통해 특성분석을 수행하였다. 16종의 시료 모두 두 종류 이상의 광물상이 공존하는 혼합광 형태이며, 주로 클라이놉틸로라이트, 휼란다이트, 모데나이트 및 차바자이트와 같은 광물의 조합으로 이루어져 있으며, 일부 시료에서는 운모 점토광물인 일라이트와 석영과 같은 광물이 불순물로 함유되어 있었다. X-선 형광 분석 결과 16종의 천연 제올라이트는 SiO2, Al2O3, K2O, CaO, Na2O, MgO 및 Fe2O3 산화물이 함유되어 있었다. 미국 천연 제올라이트인 U-1 시료가 223.3 meq/100 g으로 양이온 교환능이 가장 높게 나타났으며 몽골 천연 제올라이트에서는 M-6 시료가, 한국 천연 제올라이트에서는 K-1 시료가 각각 166.6 meq/100 g으로 가장 높게 나타났다. 열시차 및 열중량 분석 결과 16종의 시료 모두 600℃까지 열적으로 안정성이 우수한 것을 확인 하였다.

Keywords

Acknowledgement

본 연구는 2020년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임(과제번호. S2907885).

References

  1. 서 곤, 제올라이트 첫걸음, 한국제올라이트 학회, 2005.
  2. 노진환, 1989, 영일 지역산 휼란다이트군 불석에 대한 열화학적 연구. 지질학회지, 25(2), 123-136.
  3. 노진환, 2001, 국내산 제올라이트의 부가가지 향상을 위한광물특성 평가방안. 한국광물학회지(광물과산업), 14(1), 1-17.
  4. 노진환, 2003, 천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (I): 국내산 제올라이트의 양이온 교환 특성. 광물과 암석, 16(2), 135-149.
  5. 추창오, 2001, 일라이트의 광물학적 특성과 그 응용. 한국광물학회지(광물과 산업), 14(2), 29-37.
  6. Batdemberel, G., Dinnebier, R.E. and Chadraabal, S., 2015, Crystal Structural Study of Mongolian Natural Zeolite.
  7. Bray, E.L., 2020, Mineral Commodity Summaries 2020. US Geological Survey, Reston, 102-03.
  8. Breger, I.A., Chandler, J.C and Zubovic, P., 1970, An infrared study of water in heulandite and clinoptilolite. America Mineralogist Journal of Earth and Planetary Materials, 55(5-6), 825-840.
  9. Corenstedt, A.F., 1756, Ron och beskrifning om en obekant barg art, som kallas Zeolites.
  10. Jimenez-Reyes, M., Almazan-Sanchez., P.T. and Solache-Rios, M., 2021, Radioactive waste treatments by using zeolites. A short review. Journal of Environmental Radioactivity, 233, 106610. https://doi.org/10.1016/j.jenvrad.2021.106610
  11. Kim, H.S., Ko, S.O. and Lim, W.T., 2011, Single-crystal Structure of Partially Dehydrated Partially |Mg2+-exchanged Zeolite Y (FAU), Mg30.5 Na14(H2O) 2.5|[Si117Al75O384]-FAU. Bulletin of the Korean Chemical Society, 32(10), 3696-3701. https://doi.org/10.5012/BKCS.2011.32.10.3696
  12. Kim, H.S., Park, W.K., Lee, H.Y., Park, J.S. and Lim, W.T., 2014, Characterization of natural zeolite for removal of radioactive nuclides. Journal of the Mineralogical Society of Korea, 27(1), 41-51. https://doi.org/10.9727/jmsk.2013.27.1.41
  13. Kim, H.S., Kim, Y.H., Beak, K.T. and Lim, W.T., 2015, Characterization of natural zeolite and study of adsorption properties of heavy metal ions for development of zeolite mine. Journal of the Mineralogical Society of Korea, 28(4), 299-308. https://doi.org/10.9727/jmsk.2015.28.4.299
  14. Kim, W.J., Yoo, J.C., Lee, M.C., and Lee, G.J., 1996, A study on the phase identification and ion-exchange behavior of NH4+ at natural zeolite. Journal of Korean Industrial and Engineering Chemistry, 7, 43-50.
  15. Kim, Y., Kim, D.S., Jang, S.B. and Park, S.Y., 1996, Studies on the removal of metal ions wits domestic Pohang zeolites and synthetic zeolites. Journal of Korean Society of Environmental Engineering, 18, 587-602.
  16. Lim, W.T., Seo, S.M., Kim, G.H., Lee, H.S. and Seff, K., 2007, Six single-crystal structures showing the dehydration, deamination, dealumination, and decomposition of NH4+-exchanged zeolite Y (FAU) with increasing evacuation temperature. Identification of a Lewis acid site. The Journal of Physical Chemistry C, 111(49), 18294-18306. https://doi.org/10.1021/jp0742721
  17. Lee, S.B., Sung, J.K., Lee, Y.J., Lim, J.E., Song, Y.S., Lee, D.B. and Hong, S.Y., 2017, Analysis of soil total nitrogen and inorganic nitrogen content for evaluating nitrogen dynamics. Korean Society of Soil Science and Fertilizer, 2, 100-105.
  18. Medfai, W., Jaouabi, N., Khalifa, M., Aouida, S. and Ezzaouia, H., 2022, Natural-zeolite purification by a sacrificial scavenger porous layer. Chemical Physics Letters, 789, 139307. https://doi.org/10.1016/j.cplett.2021.139307
  19. Mahesh, M., Thomas, J., Kumar, K.A., Bhople, B.S., Saresh, N.V., Vaid, S.K. and Sahu, S.K., 2018, Zeolite farming: A sustainable agricultural prospective. International Journal of Current Microbiology and Applied Sciences, 7(5), 2912-2924.
  20. Olegario-Sanchez, E. and Pelicano, C.M., 2017, Characterization of Philippine natural zeolite and its application for heavy metal removal from acid mine drainage(AMD). In Key Engineering Materials, Vol. 737, 407-411. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/KEM.737.407
  21. Yoon, C.B., and Lee, H. S., 2020, Study on the Effect of Fineness and Substitution Rate of Natural zeolites on Chemical and Physical Properties of Cement Matoar. Journal of the Korea institute for structural maintenance and inspection, 24(3), 96-103. https://doi.org/10.11112/JKSMI.2020.24.3.96
  22. Zolzaya, T., Davaabal, B., Ochirbat, Z., Oyun-Erdene, G., Minjigmaa, A. and Temuujin, J., 2011, The mechanochemical activation study of Tsagaan-tsav zeolite. Mongolian Journal of Chemistry, 12, 98-101. https://doi.org/10.5564/mjc.v12i0.181