Kinetics of N2O Decomposition over Fe-TNU-9 Zeolite

Fe-TNU-9 제올라이트 상에서 아산화질소의 분해반응 속도론

  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeon, Seong-Hee (Department of Chemical Engineering, Chungbuk National University) ;
  • Van Khoa, Nguyen (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2009.07.10
  • Accepted : 2009.07.13
  • Published : 2009.08.10

Abstract

Iron-containing TNU-9 zeolites were prepared by aqueous ion exchange in the range of Fe contents 0.6~3.3 wt%. Direct decomposition of $N_2O$ was performed varying $N_2O$ concentrations and reaction temperatures. Fe-TNU-9 zeolites used were characterized using XRD, $N_2$ sorption, SEM/EDX. A 2.7 wt% Fe-TNU-9 zeolite showed high activities and above this contents of Fe the effect of catalytic activity was little dominated. Fe-TNU-9 zeolites after ion exchange conserved their TNU-9 structure although the degree of crystallinity was decreased until ca. 60% in 3.1 wt% Fe-TNU-9 zeolite after ion exchange in 0.01 M Fe solution. The decrease in the degree of crystallinity could be correlated with the decrease of surface area and pore volume. The partial reaction order of $N_2O$ in the decomposition of $N_2O$ was dependent on the reaction temperature from 0.69 at $420^{\circ}C$ to 0.97 at $494^{\circ}C$. The activation energy of $N_2O$ was also dependent on the $N_2O$ concentration and its value is ranged to 34~43 kcal/mol.

Fe의 함량을 0.5~3.3 wt%의 범위에서 이온 교환하여 제조한 Fe-TNU-9 제올라이트 촉매상에서 $N_2O$ 농도를 2000~8500 ppm, 반응온도를 $300{\sim}550^{\circ}C$ 범위 내에서 $N_2O$ 직접분해반응을 수행하였다.제조된 촉매는 X-선 회절분석, 질소흡착, 주사전자현미경 등으로 특성분석을 수행하였다. 최적 Fe 함량은 2.7 wt%로 그 이상의 함량에 있어 Fe 함량은 $N_2O$ 직접분해반응에 큰 영향을 미치지 않았다. 이온교환 후에 TNU-9의 XRD 상으로는 안정된 상태를 유지하였지만 0.01 M Fe 용액 하에서 이온 교환한 3.1 wt% Fe-TNU-9 제올라이트는 H-TNU-9에 비해 최대 60%까지의 결정화도가 감소하였다. 이러한 결정화도의 감소는 비표면적 및 기공부피와 연관질 수 있지만 감소정도는 약 10% 정도로 결정화도 감소와 비교하면 영향은 크지 않았다. 멱차수법을 이용한$N_2O$ 분해반응에 있어$N_2O$ 부분 반응차수는 $420^{\circ}C$에서 0.69, $464^{\circ}C$에서 0.97차까지 변화하였다. 활성화 에너지는$N_2O$의 농도가 증가하면 같은 경향으로 증가하였고, 34~43 kcal/mol 범위 내에서 넓게 분포하였다.

Keywords

Acknowledgement

Supported by : 충북대학교

References

  1. K. S. Chang, J. Korean Ind. Eng. Chem., 19, 17 (2008)
  2. F. Kaptejin, J. Rodriguez-Mirasol, and J. A. Moulijin, Appl. Catal. B: Environ., 9, 25 (1996) https://doi.org/10.1016/0926-3373(96)90072-7
  3. J. Perez-Ramirez, F. Kaptejin, G. Mul, and J. Moulijin, Catal. Commun., 3, 19 (2002) https://doi.org/10.1016/S1566-7367(01)00072-3
  4. http://www.gihoo.or.kr
  5. E. R. S. Winter, J. Catal., 19, 32 (1970) https://doi.org/10.1016/0021-9517(70)90293-9
  6. E. R. S. Winter, J. Catal., 34, 431 (1974) https://doi.org/10.1016/0021-9517(74)90056-6
  7. V. I. Parvulescu, P. Grange, and B. Delmon, Catal. Today, 46, 233 (1998) https://doi.org/10.1016/S0920-5861(98)00399-X
  8. A. Dandekar and M. A. Vannice, Appl. Catal., B 22, 179 (1999) https://doi.org/10.1016/S0926-3373(99)00049-1
  9. K. Yuzaki, T. Yarimizu, K. Aoyaki, S. Ito, and K. Kunimori, Catal. Today, 45, 129 (1998) https://doi.org/10.1016/S0920-5861(98)00259-4
  10. C. S. Samy and J. Cristoher, Catal Rev. Sci. Eng., 34, 409 (1992) https://doi.org/10.1080/01614949208016320
  11. T. Ishihara, M. Ando, K. Sada, K. Takiishi, K. Yamada, H. Nishiguchi, and Y. Takita, J. Catal., 220, 104 (2003) https://doi.org/10.1016/S0021-9517(03)00265-3
  12. J. P. Dacquin, C. Dujardin, and P. Granger, J. Catal., 253, 37 (2008) https://doi.org/10.1016/j.jcat.2007.10.023
  13. J. Leglise, J. O. Petunchi, and W. H. Hall, J. Catal., 86. 392 (1984) https://doi.org/10.1016/0021-9517(84)90384-1
  14. F. Gramn, Ch. Baerlocher, L. B. McCusker, S. J. Warrender, P. A. Wright, B. Han, S. B. Hong, T. Ohsuna, and O. Terasaki, Nature, 444, 79 (2006) https://doi.org/10.1038/nature05200
  15. S. B. Hong, H.-K. Min, C.-H. Shin, P. A. Cox, S. J. Warrender, and P. A. Wright, J. Am. Chem. Soc., 129, 10870 (2007) https://doi.org/10.1021/ja073109g
  16. International Zeolite Association, Structure Commission, http://www.iza-structure.org
  17. J.-H. Park, J.-H. Choung, I.-S. Nam, and S.-W. Ham, Appl. Catal. B: Environ., 78, 342 (2008) https://doi.org/10.1016/j.apcatb.2007.09.020
  18. J. P. Ramirez, F. Kaptejin, and A. Bruckner, J. Catal., 218, 234 (2003) https://doi.org/10.1016/S0021-9517(03)00087-3
  19. J.-H. Park, S.-H. Jeon, N. V. Khoa, and C.-H. Shin, Clean Technology, 15, 122 (2009)
  20. S. Kawi, S. H. Liu, and S.-C. Shen, Catal. Today, 68, 237 (2001) https://doi.org/10.1016/S0920-5861(01)00283-8
  21. M. Yoshida, T. Nobukawa, S.-I. Ito, K. Tomishige, and K. Kunimori, J. Catal., 223, 454 (2004) https://doi.org/10.1016/j.jcat.2004.02.002
  22. B. Coq, M. Mauvezin, G. Delahay, and S. Kieger, J. Catal., 195, 298 (2000) https://doi.org/10.1006/jcat.2000.2980
  23. G. D. Pirngruber, M. Luechinger, P. K. Roy, A. Cecchetto, and P. Smirniotis, J. Catal., 224, 429 (2004) https://doi.org/10.1016/j.jcat.2004.03.031
  24. P. Roy and G. D. Pirngruber, J. Catal., 227, 167 (2004)
  25. B. R. Wood, J. A. Reimer, and A. T. Bell, J. Catal., 209, 151 (2002) https://doi.org/10.1006/jcat.2002.3610
  26. B. R. Wood, J. A. Reimer, A. T. Bell, M. T. Hanicke, and K. C. Ott, J. Catal., 224, 148 (2004) https://doi.org/10.1016/j.jcat.2004.02.025
  27. J. A. Ryder, A. K. Chakraborty, and A. T. Bell, J. Phys. Chem. B, 106, 7059 (2002) https://doi.org/10.1021/jp014705e
  28. A. Heyden, A. T. Bell, and F. J. Keil, J. Catal., 233, 26 (2005) https://doi.org/10.1016/j.jcat.2005.04.003