Effect of Plasticizer on Physical Properties of Poly(vinyl acetate-co-ethylene) Emulsion

Poly(vinyl acetate-co-ethylene) 에멀젼 물성에 대한 가소제 효과

  • Choi, Yong-Hae (Division of Chemical Engineering, Pukyong National University) ;
  • Lee, Won-Ki (Division of Chemical Engineering, Pukyong National University)
  • 최용해 (부경대학교 응용화학공학부) ;
  • 이원기 (부경대학교 응용화학공학부)
  • Received : 2009.05.15
  • Accepted : 2009.06.24
  • Published : 2009.08.10

Abstract

In this study, physical properties of poly(vinyl acetate-co-ethylene) (VAE) emulsion were investigated by adding different amounts of di-butyl phthalate (DBP) which is a common plasticizer of VAE. The glass transition temperature $(T_g)$ of the dried plasticized VAE emulsion film, which measured by Differential Scanning Calorimeter, was decreased with increasing the DBP contents while the viscosity of the plasticized VAE emulsion was increased with the DBP contents. These results suggest that the plasticizer in the dried VAE film can prevent the strong interaction between chains, resulted by the decrease of $T_g$. In the emulsion, however, the particle sizes were swelled by the penetration of plasticizers and then its viscosity increased with the DBP content. When the DBP was added, the mechanical properties of the plasticized VAE films, such as tensile strength, elongation and creep resistance, were decreased while the water resistance was increased.

본 논문에서는 poly(vinyl acetate-co-ethylene) (VAE) 에멀젼에 가소제로 많이 사용되는 di-butyl phthalate (DBP)를 혼합하여 가소제 함량에 따른 물성 변화를 고찰하였다. 시차주사열량계(Differential Scanning Calorimeter) 측정으로부터 건조한 필름의 유리전이온도($T_g$)를 측정한 결과,가소제 함량의 증가에 따라, $T_g$는 감소하는 경향을 나타내었고 반면에 에멀젼의 점도는 가소제 함량의 증가와 더불어 증가하였다. 이러한 결과는 건조한 필름상태에서 가소제는 고분자사슬의 상호작용을 방해하여 $T_g$를 감소시키며 에멀젼 상에서는 가소제가 에멀젼 입자 내로 침투하여 swelling시킴으로써 입자크기가 증가하고 점도를 상승키는 것으로 나타났다. 기계적 물성은 가소제의 함량이 증가할수록 저하되었으나 내수성은 증가되는 결과를 얻었다.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. H. Y. Won and I. W. Kim, Polymer Science and Technology, 6, 101 (1995)
  2. R. Hyppola, I. Husson, and F. Sundholm, Int. J. Pharm., 133, 161 (1996) https://doi.org/10.1016/0378-5173(96)04436-5
  3. D. Hutchings, S. Clason, and A.Sake, Int. J. Pharm., 104, 203 (1994) https://doi.org/10.1016/0378-5173(94)90161-9
  4. H. F. Mark, N. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, Encyclopedia of Polymer Science and Engineering, 3, 498, John Wiley & Sons, Inc., New York (1985)
  5. L. Krauskopf and W. Arndt, Plastics Additives and Modifiers Handbook, Van Nostrand Reinhold Co., Inc., New York (1992)
  6. C. S. Chern, Progress in Polymer Science, 31, 443 (2006) https://doi.org/10.1016/j.progpolymsci.2006.02.001
  7. B. G. Woo, Recent Plastic Materials, 54, Dae Kwang Press (1995)
  8. B. A. Gruber, M. S. Vratsanos, and C. D. Smith, Macromol. Symp., 155, 163 (2000) https://doi.org/10.1002/1521-3900(200004)155:1<163::AID-MASY163>3.0.CO;2-2
  9. M. L. Cerrada, R. Benavente, E. P${\acute{e}}$rez, and J. M. Pere${\tilde{n}}$a, J. Polym. Sci.: Part B; Polym. Phys., 38, 573 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000215)38:4<573::AID-POLB9>3.0.CO;2-1
  10. P. J. Scott, A. Penlidis, and G. L. Rempel, J. Polym. Sci.: Part A; Polym. Chem., 31, 2205 (1993) https://doi.org/10.1002/pola.1993.080310904
  11. P. J. Scott, A. Penlidis, and G. L. Rempel, J. Polym. Sci.: Part A; Polym. Chem., 31, 403 (1993) https://doi.org/10.1002/pola.1993.080310213
  12. L. M. Robeson and M. S. Vratsanos, Macromol. Symp., 155, 117 (2000) https://doi.org/10.1002/1521-3900(200004)155:1<117::AID-MASY117>3.0.CO;2-6
  13. G. Arzamendi and J. M. Asua, Znd. Eng. Chem. Res., 30, 1342 (1991) https://doi.org/10.1021/ie00054a041
  14. J. L. Gardon, J. Polym. Sci., Part A-I: Polym. Chem., 6, 665(1968) https://doi.org/10.1002/pol.1968.150060320
  15. J. W. McGinity, Aqueous polymeric coatings for pharmaceutical dosage forms, 2nd Ed., 14, Marcel Dekker, New York (1997)
  16. R. J. Lorenz and C. L. Daniels, Adhesives Age, 41, 34 (1998)