• Title/Summary/Keyword: you only look once (YOLO)

Search Result 94, Processing Time 0.026 seconds

Object Recognition in 360° Streaming Video (360° 스트리밍 영상에서의 객체 인식 연구)

  • Yun, Jeongrok;Chun, Sungkuk;Kim, Hoemin;Kim, Un Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.317-318
    • /
    • 2019
  • 가상/증강현실로 대표되는 공간정보 기반 실감형 콘텐츠에 대한 관심이 증대되면서 객체인식 등의 지능형 공간인지 기술에 대한 연구가 활발히 진행되고 있다. 특히 HMD등의 영상 시각화 장치의 발달 및 5G 통신기술의 출현으로 인해 실시간 대용량 영상정보의 송, 수신 및 가시화 처리 기술의 기반이 구축됨에 따라, $360^{\circ}$ 스트리밍 영상정보 처리와 같은 고자유도 콘텐츠를 위한 관련 연구의 필요성이 증대되고 있다. 하지만 지능형 영상정보 처리의 대표적 연구인 딥 러닝(Deep Learning) 기반 객체 인식 기술의 경우 대부분 일반적인 평면 영상(Planar Image)에 대한 처리를 다루고 있고, 파노라마 영상(Panorama Image) 특히, $360^{\circ}$ 스트리밍 영상 처리를 위한 연구는 미비한 상황이다. 본 논문에서는 딥 러닝을 이용하여 $360^{\circ}$ 스트리밍 영상에서의 객체인식 연구 방법에 대해 서술한다. 이를 위해 $360^{\circ}$ 카메라 영상에서 딥 러닝을 위한 학습 데이터를 획득하고, 실시간 객체 인식이 가능한 YOLO(You Only Look Once)기법을 이용하여 학습을 한다. 실험 결과에서는 학습 데이터를 이용하여 $360^{\circ}$영상에서 객체 인식 결과와, 학습 횟수에 따른 객체 인식에 대한 결과를 보여준다.

  • PDF

Automating mosaic processing using AI, 'B.A.M.O.S' (AI를 이용한 모자이크 처리의 자동화, 'B.A.M.O.S')

  • Shim, Han-Moi;Cho, Beom-Seok;Yeom, Cheol-Jun;Oh, Jun-Hwi;Woo, Young-Hak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.17-18
    • /
    • 2022
  • 현재 국내에서는 1인 1스마트폰 시대를 맞이하게 되었고 이에 맞춰 많은 종류의 관련 산업들이 발전하고 있다. 특히 멀티미디어와 콘텐츠 산업 또한 크게 성장하고 있다. 이런 상황에서 필수적으로 사용되는 편집 기술을 위하여, 많은 소프트웨어가 등장하고 이용되고 있다. 편집을 자유롭게 이용하기 위해서는 전문적인 인력이 필요하거나 시간이나 자본을 들여서 이해와 학습을 필수적으로 해야 한다. 본 논문에서는 이러한 편집 과정의 수고로움을 덜어줄 수 있도록 인공지능의 객체탐지 기술을 이용하여 특정 상표에 대한 모자이크 처리 작업을 자동으로 할 수 있는 B.A.M.O.S를 개발하였다. YOLO 알고리즘을 이용하여 목표 상표를 학습시켜 이를 B.A.M.O.S에 적용하였고, 목표 상표를 인식하여 모자이크 처리를 하도록 하였다.

  • PDF

Development of a Self-Driving Service Robot for Monitoring Violations of Quarantine Rules (방역수칙 위반 감시를 위한 자율주행 서비스 로봇 개발)

  • Lee, In-kyu;Lee, Yun-jae;Cho, Young-jun;Kang, Jeong-seok;Lee, Don-gil;Yoo, Hong-seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.323-324
    • /
    • 2022
  • 본 논문에서는 사람의 개입 없이 실내 환경에서 마스크 미 착용자를 스스로 발견한 후 방역수칙위반 사실에 대한 경고와 함께 마스크 착용을 권고하는 인공지능 기반의 자율주행 서비스 로봇을 개발한다. 제안한 시스템에서 로봇은 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping)기술을 이용하여 지도를 작성한 후 사용자가 제공한 웨이포인트(Waypoint)를 기반으로 자율주행한다. 또한, YOLO(You Only Look Once) 알고리즘을 이용한 실시간 객체 인식 기술을 활용하여 보행자의 마스크 착용 여부를 판단한다. 실험을 통해 사전에 작성된 지도에 지정된 웨이포인트를 따라 로봇이 자율주행하는 것을 확인하였다. 또한, 충전소로 이동할 경우, 영상 처리 기법을 활용하여 충전소에 부착된 표식에 근접하도록 이동하여 충전이 진행됨을 확인하였다.

  • PDF

Car detection area segmentation using deep learning system

  • Dong-Jin Kwon;Sang-hoon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.182-189
    • /
    • 2023
  • A recently research, object detection and segmentation have emerged as crucial technologies widely utilized in various fields such as autonomous driving systems, surveillance and image editing. This paper proposes a program that utilizes the QT framework to perform real-time object detection and precise instance segmentation by integrating YOLO(You Only Look Once) and Mask R CNN. This system provides users with a diverse image editing environment, offering features such as selecting specific modes, drawing masks, inspecting detailed image information and employing various image processing techniques, including those based on deep learning. The program advantage the efficiency of YOLO to enable fast and accurate object detection, providing information about bounding boxes. Additionally, it performs precise segmentation using the functionalities of Mask R CNN, allowing users to accurately distinguish and edit objects within images. The QT interface ensures an intuitive and user-friendly environment for program control and enhancing accessibility. Through experiments and evaluations, our proposed system has been demonstrated to be effective in various scenarios. This program provides convenience and powerful image processing and editing capabilities to both beginners and experts, smoothly integrating computer vision technology. This paper contributes to the growth of the computer vision application field and showing the potential to integrate various image processing algorithms on a user-friendly platform

Real time instruction classification system

  • Sang-Hoon Lee;Dong-Jin Kwon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.212-220
    • /
    • 2024
  • A recently the advancement of society, AI technology has made significant strides, especially in the fields of computer vision and voice recognition. This study introduces a system that leverages these technologies to recognize users through a camera and relay commands within a vehicle based on voice commands. The system uses the YOLO (You Only Look Once) machine learning algorithm, widely used for object and entity recognition, to identify specific users. For voice command recognition, a machine learning model based on spectrogram voice analysis is employed to identify specific commands. This design aims to enhance security and convenience by preventing unauthorized access to vehicles and IoT devices by anyone other than registered users. We converts camera input data into YOLO system inputs to determine if it is a person, Additionally, it collects voice data through a microphone embedded in the device or computer, converting it into time-domain spectrogram data to be used as input for the voice recognition machine learning system. The input camera image data and voice data undergo inference tasks through pre-trained models, enabling the recognition of simple commands within a limited space based on the inference results. This study demonstrates the feasibility of constructing a device management system within a confined space that enhances security and user convenience through a simple real-time system model. Finally our work aims to provide practical solutions in various application fields, such as smart homes and autonomous vehicles.

Vehicle Waiting Time Information Service using Vehicle Object Detection at Fuel Charging Station

  • Rijayanti, Rita;Muhammad, Rifqi Fikri;Hwang, Mintae
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.147-154
    • /
    • 2020
  • In this study, we created a system that can determine the number of vehicles entering and departing a charging station in real time for solving waiting time problems during refueling. Accordingly, we use the You Only Look Once object detection algorithm to detect and count the number of vehicles in the charging station and send the data to the Firebase Realtime Database. The result is shown using an Android application that provides a map function with the Kakao Maps API at the user interface side. Our system has an accuracy of 91% and an average response time of 3.1 s. Therefore, this system can be used by drivers to determine the availability of a charging station and to identify the charging station with the least waiting time for charging their vehicle.

A Study on Pedestrians Tracking using Low Altitude UAV (저고도 무인항공기를 이용한 보행자 추적에 관한 연구)

  • Seo, Chang Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

Automatic Fish Size Measurement System for Smart Fish Farm Using a Deep Neural Network (심층신경망을 이용한 스마트 양식장용 어류 크기 자동 측정 시스템)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.177-183
    • /
    • 2022
  • To measure the size and weight of the fish, we developed an automatic fish size measurement system using a deep neural network, where the YOLO (You Only Look Once)v3 model was used. To detect fish, an IP camera with infrared function was installed over the fish pool to acquire image data and used as input data for the deep neural network. Using the bounding box information generated as a result of detecting the fish and the structure for which the actual length is known, the size of the fish can be obtained. A GUI (Graphical User Interface) program was implemented using LabVIEW and RTSP (Real-Time Streaming protocol). The automatic fish size measurement system shows the results and stores them in a database for future work.

Development of Multi-Person Pose-Estimation and Tracking Algorithm (다중 사용자 포즈 추정 및 트래킹 알고리즘의 구현)

  • Kim, Seung-Ryeol;Ahn, So-Yoon;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.215-217
    • /
    • 2021
  • 본 논문은 3D 공간에서 사용자를 추출한 뒤, 체적 정보 분석을 통한 3D 스켈레톤(skeleton) 분석 과정을 통해 정확도 높은 다수 사용자의 위치 추적 기술에 대해 연구하였다. 이를 위하여 YOLO(You Only Look Once)를 활용하여 실시간으로 객체를 검출(Real-Time Object Detection)한 뒤 Google의 Mediapipe를 활용해 스켈레톤 추출, 스켈레톤 정규화(normalization)를 통한 스켈레톤의 크기 및 상대적 비율 계산, RGB 영상 스케일링(Scaling) 후 주요 마디 인접 영역의 RGB 색상 정보를 추출하는 방법을 통해 정확도가 개선된 높은 성능의 다중 사용자 추적 기술을 연구하였다.

  • PDF

A Study on the Improvement of YOLOv7 Inference Speed in Jetson Embedded Platform (Jetson 임베디드 플랫폼에서의 YOLOv7 추론 속도 개선에 관한 연구)

  • Bo-Chan Kang;Dong-Young Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.154-155
    • /
    • 2023
  • 오픈 소스인 YOLO(You Only Look Once) 객체 탐지 알고리즘이 공개된 이후, 산업 현장에서는 고성능 컴퓨터에서 벗어나 효율과 특수한 환경에 사용하기 위해 임베디드 시스템에 도입하고 있다. 그러나, NVIDIA의 Jetson nano의 경우, Pytorch의 YOLOv7 딥러닝 모델에 대한 추론이 진행되지 않는다. 따라서 제한적인 전력과 메모리, 연산능력 최적화 과정은 필수적이다. 본 논문은 NVIDIA의 임베디드 플랫폼 Jetson 계열의 Xavier NX, Orin AGX, Nano에서 딥러닝 모델을 적용하기 위한 최적화 과정과 플랫폼에서 다양한 크기의 YOLOv7의 PyTorch 모델들을 Tensor RT로 변환하여 FPS(Frames Per Second)를 측정 및 비교한다. 측정 결과를 통해, 각 임베디드 플랫폼에서 YOLOv7 모델의 추론은 Tensor RT는 Pytorch에서 약 4.1배 적은 FPS 변동성과 약 2.25배 정도의 FPS 속도향상을 보였다.