• Title/Summary/Keyword: yolo

Search Result 398, Processing Time 0.028 seconds

Real-time traffic light information recognition based on object detection models (객체 인식 모델 기반 실시간 교통신호 정보 인식)

  • Joo, eun-oh;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.81-93
    • /
    • 2022
  • Recently, there have been many studies on object recognition around the vehicle and recognition of traffic signs and traffic lights in autonomous driving. In particular, such the recognition of traffic lights is one of the core technologies in autonomous driving. Therefore, many studies for such the recognition of traffic lights have been performed, the studies based on various deep learning models have increased significantly in recent. In addition, as a high-quality AI training data set for voice, vision, and autonomous driving is released on AIHub, it makes it possible to develop a recognition model for traffic lights suitable for the domestic environment using the data set. In this study, we developed a recognition model for traffic lights that can be used in Korea using the AIHub's training data set. In particular, in order to improve the recognition performance, we used various models of YOLOv4 and YOLOv5, and performed our recognition experiments by defining various classes for the training data. In conclusion, we could see that YOLOv5 shows better performance in the recognition than YOLOv4 and could confirm the reason from the architecture comparison of the two models.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-Suk;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1130-1135
    • /
    • 2022
  • In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office has built a control center for CCTV control and is performing 24-hour CCTV video control for the safety of citizens. Seoul Metropolitan Government is building a smart city integrated platform that is safe for citizens by providing CCTV images of the ward office to enable rapid response to emergency/emergency situations by signing an MOU with related organizations. In this paper, when an incident occurs at the Seoul Metropolitan Government Office, the escape route is predicted by discriminating people and vehicles using the AI DNN-based Template Matching technology, MLP algorithm and CNN-based YOLO SPP DNN model for CCTV images. In addition, it is designed to automatically disseminate image information and situation information to adjacent ward offices when vehicles and people escape from the competent ward office. The escape route prediction and tracking system using artificial intelligence can expand the smart city integrated platform nationwide.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.

Object Detection-Based Cloud System: Efficient Disease Monitoring with Database (객체 검출 기반 클라우드 시스템 : 데이터베이스를 통한 효율적인 병해 모니터링)

  • Jongwook Si;Junyoung Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.210-219
    • /
    • 2023
  • The decline in the rural populace and an aging workforce have led to fatalities due to worsening environments and hazards within vinyl greenhouses. Therefore, it is necessary to automate crop cultivation and disease detection system in greenhouses to prevent labor loss. In this paper, an object detection-based model is used to detect diseased crop in greenhouses. In addition, the system proposed configures the environment of the artificial intelligence model in the cloud to ensure stability. The system captures images taken inside the vinyl greenhouse and stores them in a database, and then downloads the images to the cloud to perform inference based on Yolo-v4 for detection, generating JSON files for the results. Analyze this file and send it to the database for storage. From the experimental results, it was confirmed that disease detection through object detection showed high performance in real environments like vinyl greenhouses. It was also verified that efficient monitoring is possible through the database

Estimating vegetation index for outdoor free-range pig production using YOLO

  • Sang-Hyon Oh;Hee-Mun Park;Jin-Hyun Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.638-651
    • /
    • 2023
  • The objective of this study was to quantitatively estimate the level of grazing area damage in outdoor free-range pig production using a Unmanned Aerial Vehicles (UAV) with an RGB image sensor. Ten corn field images were captured by a UAV over approximately two weeks, during which gestating sows were allowed to graze freely on the corn field measuring 100 × 50 m2. The images were corrected to a bird's-eye view, and then divided into 32 segments and sequentially inputted into the YOLOv4 detector to detect the corn images according to their condition. The 43 raw training images selected randomly out of 320 segmented images were flipped to create 86 images, and then these images were further augmented by rotating them in 5-degree increments to create a total of 6,192 images. The increased 6,192 images are further augmented by applying three random color transformations to each image, resulting in 24,768 datasets. The occupancy rate of corn in the field was estimated efficiently using You Only Look Once (YOLO). As of the first day of observation (day 2), it was evident that almost all the corn had disappeared by the ninth day. When grazing 20 sows in a 50 × 100 m2 cornfield (250 m2/sow), it appears that the animals should be rotated to other grazing areas to protect the cover crop after at least five days. In agricultural technology, most of the research using machine and deep learning is related to the detection of fruits and pests, and research on other application fields is needed. In addition, large-scale image data collected by experts in the field are required as training data to apply deep learning. If the data required for deep learning is insufficient, a large number of data augmentation is required.

A Study on the Trigger Technology for Vehicle Occupant Detection (차량 탑승 인원 감지를 위한 트리거 기술에 관한 연구)

  • Lee, Dongjin;Lee, Jiwon;Jang, Jongwook;Jang, Sungjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.120-122
    • /
    • 2021
  • Currently, as demand for cars at home and abroad increases, the number of vehicles is decreasing and the number of vehicles is increasing. This is the main cause of the traffic jam. To solve this problem, it operates a high-ocompancy vehicle (HOV) lane, a multi-passenger vehicle, but many people ignore the conditions of use and use it illegally. Since the police visually judge and crack down on such illegal activities, the accuracy of the crackdown is low and inefficient. In this paper, we propose a system design that enables more efficient detection using imaging techniques using computer vision to solve such problems. By improving the existing vehicle detection method that was studied, the trigger was set in the image so that the detection object can be selected and the image analysis can be conducted intensively on the target. Using the YOLO model, a deep learning object recognition model, we propose a method to utilize the shift amount of the center point rather than judging by the bounding box in the image to obtain real-time object detection and accurate signals.

  • PDF

Development of Crosswalk Situation Recognition Device (횡단보도 상황 인식 디바이스 개발)

  • Yun, Tae-Jin;No, Mu-Ho;Yeo, Jeong-Hun;Kim, Jae-Yun;Lee, Yeong-Hoon;Hwang, Seung-Hyeok;Kim, Hyeon-Su;Kim, Hyeong-Jun;Park, Seung-Ryeol;Bae, Chang-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.143-144
    • /
    • 2020
  • 4차 산업 시대가 도래하여 빅데이터와 딥러닝 기술은 다양한 분야에서 아주 중요한 기술로 자리 잡고 있으며, 현재 세계 여러 분야에서 이 기술들을 이용하여 일상, 산업 분야에 적용을 시키고자 한다. 국내에서는 스마트 팩토리, 스마트 시티와 같은 분야에 적용하고 있다. 본 논문에서는 스마트 시티에 적용할 수 있는 횡단보도 상황을 인지하여 교통제어에 활용할 수 있는 빅데이터를 생산하거나 효율적인 교통제어에 활용할 수 있도록 Nvidia Jetson TX2와 실시간 객체 감지 기술인 YOLO v3를 이용하여 횡단보도용 상황 인식을 위한 영상인식 장치를 개발하였다. 제안하는 기술들을 이용하여 스마트시티 구축에 활용할 수 있고, 실시간으로 추가적으로 필요한 객체를 감지하여 확장이 용이한 장점이 있다. 또한 구현에서 효율성을 높이기 위하여 에지 컴퓨팅, 스페이스 디텍션과 같은 기술들을 활용하였다.

  • PDF

Class Classification and Type of Learning Data by Object for Smart Autonomous Delivery (스마트 자율배송을 위한 클래스 분류와 객체별 학습데이터 유형)

  • Young-Jin Kang;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • Autonomous delivery operation data is the key to driving a paradigm shift for last-mile delivery in the Corona era. To bridge the technological gap between domestic autonomous delivery robots and overseas technology-leading countries, large-scale data collection and verification that can be used for artificial intelligence training is required as the top priority. Therefore, overseas technology-leading countries are contributing to verification and technological development by opening AI training data in public data that anyone can use. In this paper, 326 objects were collected to trainn autonomous delivery robots, and artificial intelligence models such as Mask r-CNN and Yolo v3 were trained and verified. In addition, the two models were compared based on comparison and the elements required for future autonomous delivery robot research were considered.

Building-up and Feasibility Study of Image Dataset of Field Construction Equipments for AI Training (인공지능 학습용 토공 건설장비 영상 데이터셋 구축 및 타당성 검토)

  • Na, Jong Ho;Shin, Hyu Soun;Lee, Jae Kang;Yun, Il Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.99-107
    • /
    • 2023
  • Recently, the rate of death and safety accidents at construction sites is the highest among all kinds of industries. In order to apply artificial intelligence technology to construction sites, it is essential to secure a dataset which can be used as a basic training data. In this paper, a number of image data were collected through actual construction site, for which major construction equipment objects mainly operated in civil engineering sites were defined. The optimal training dataset construction was completed by annotation process of about 90,000 image dataset. Reliability of the dataset was verified with the mAP of over 90 % in use of YOLO, a representative model in the field of object detection. The construction equipment training dataset built in this study has been released which is currently available on the public data portal of the Ministry of Public Administration and Security. This dataset is expected to be freely used for any application of object detection technology on construction sites especially in the field of construction safety in the future.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF