• Title/Summary/Keyword: yield force

Search Result 507, Processing Time 0.032 seconds

반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발

  • Nam, Gyeong-Tak;Kim, Ho-Jung;Kim, Yeong-Gil;Kim, Tae-Seong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.128-131
    • /
    • 2007
  • As the minimum feature size decrease, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT. Charged monodisperse particles are generated using scanning mobility particle sizer (SMPS) and deposited on the wafer by electrostatic force. The experimental results agreed with the simulation results well. We calculate the particles loss in pipe flow theoretically and compare with the experimental results.

  • PDF

Failure mechanisms of a rigid-perfectly plastic cantilever with elastic deformation at its root subjected to tip pulse loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.141-156
    • /
    • 1994
  • In this paper, the effect of material elasticity was evaluated through a simple model as proposed by Wang and Yu (1991), for yield mechanisms of a cantilever beam under tip pulse loading. The beam was assumed rigid-perfectly plastic but instead of the usual fully clamped constraints at its root, an elastic-perfectly plastic rotational spring was introduced there so the system had a certain capacity to absorb elastic energy. Compared with a rigid-perfectly plastic beam without a spring root, the present beam-spring model showed differences in the initial plastic hinge position and the minimum magnitude of the dynamic force needed to produce a plastic failure. It was also shown that various failure responses may happen while the hinge travels along the beam segment towards the root, rather than a unique response mode as in a rigid perfectly plastic analysis.

Development of Prediction Model for Sidewall Curl in Sheet Metal Forming(I)-Analytical Model (박판성형시 컬 예측모델 개발(I)-해석적 모델)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.432-437
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control sidewall curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. The analytical model includes the variables of applied tensile force, the yield strength, the elastic modulus, the bending radius, and the sheet thickness, which are the primary factors affecting sidewall curl during sheet stamping operations. For the accuracy of analytical model, six possible deformation patterns are proposed on the basis of material properties and bending geometries.

Measurement of Springback of AZ31B Mg Alloy Sheet in OSU Draw/bend Test (AZ31B 마그네슘 합금 판재의 OSU 드로우벤드 시험과 스프링 백 측정)

  • Choi, J.G.;Choi, S.C.;Lee, M.G.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.447-451
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. So, there will be a difference in the prediction of springback with symmetric mechanical properties for magnesium alloy sheets. In this work, the Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force and the tendency of springback angle was observed from the tests.

Alternative Optimization Techniques for Shallow Trench Isolation and Replacement Gate Technology Chemical Mechanical Planarization

  • Stefanova, Y.;Cilek, F.;Endres, R.;Schwalke, U.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • This paper discusses two approaches for pre-polishing optimization of oxide chemical mechanical planarization (CMP) that can be used as alternatives to the commonly applied dummy structure insertion in shallow trench isolation (STI) and replacement gate (RG) technologies: reverse nitride masking (RNM) and oxide etchback (OEB). Wafers have been produced using each optimization technique and CMP tests have been performed. Dishing, erosion and global planarity have been investigated with the help of conductive atomic force microscopy (C-AFM). The results demonstrate the effectiveness of both techniques which yield excellent planarity without dummy structure related performance degradation due to capacitive coupling.

State-of-art on Its Application and Errors in Pushover Analysis of Building Structures (건축물의 내진설계에서 정적 비선형해석의 적용과 오차에 대한 고찰)

  • Jun, Dae-Han;Song, Ho-San
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.1 s.15
    • /
    • pp.99-105
    • /
    • 2005
  • The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.

  • PDF

Influence of Bingham Characteristics for ER Fluid on Semi-Active Suspension System (ER유체의 역학적 특성이 반능동 현가시스템에 미치는 영향)

  • 김옥삼;김일겸;조남철;박우철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.434-440
    • /
    • 2004
  • The electro-rheological fluids for semi-active suspension system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when they are subjected to external electrical fields. This paper presents Bingham properties of ER fluids subjected to temperature variations. In addition, an appropriate size of the ER damper for a passenger car is proposed to investigate the effects of Bingham characteristics on the damping performance. The filed-dependent damping forces are evaluated according to the temperature variation and sedimentation ratio.

Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application (미소 기전 시스템용 니켈 박막의 기계적 물성 측정)

  • Baek, Dong-Cheon;Park, Tae-Sang;Lee, Soon-Bok;Lee, Nag-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

Surface polishing of Micro channel using Magneto-Rheological fluid (MR유체를 이용한 미세 채널구조물의 표면연마)

  • 이승환;김욱배;민병권;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1873-1876
    • /
    • 2003
  • Magneto-rheological polishing is a new technology used in precision polishing. It utilizes magneto-rheological fluid. nonmagnetic polishing abrasive, aqueous carrier fluids in magnetic field to remove material from a part surface. Silicon micro channel as work piece is fixed in the slurry which is made of MR fluid and CeO$_2$(10 vol%) abrasive particles. And permanent magnet rotate in the slurry to transfers magnetic force to abrasive particles by increasing yield strength of MR fluid. so, the obtained bottom surface roughness of micro channel by experiment reduced to Ra 0.010 $\mu\textrm{m}$ Rmax 0.103 $\mu\textrm{m}$ and finwall surface roughness of micro channel reduced to Ra 0.018 $\mu\textrm{m}$ Rmax 0.468 $\mu\textrm{m}$. At optimum conditions of variables, the workpiece as silicon micro channel have about 24 times smaller surface roughness than before polishing.

  • PDF

State-of-art on Its Application and Errors in Pushover Analysis of Building Structures (건축물의 내진설계에서 정적 비선형해석의 적용과 오차에 대한 고찰)

  • Jun, Dae-Han;Song, Ho-San
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.103-110
    • /
    • 2004
  • The pushover analysis is becoming a popular tool for seismic design of building structures. In this paper the state-of-art on static nonlinear analysis of building structures is presented with the emphasis on the effects of analysis parameters; i. e., lateral load patterns, modeling of members, and analysis computer programs. The analysed results may have variation even if a same structure is analysed. This paper is to investigate how large the variation is and what the main causes of the variation are. The difference of analysed results, the resultant variation of lateral story shear force and flexural strength of structural members are discussed. The pushover analysis procedure are routinely used in the seismic design of building structures, but some problems must yet be clarified, such as the effects to evaluate the parameters of analysis on the basis of a lateral load patterns and modeling of members.

  • PDF