• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.027 seconds

Optimization of Reduced Bitterness of Alcalase-treated Anchovy Engrauris japonica Hydrolysate by Aminopeptidase Active Fraction from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의한 Alcalase 처리 멸치(Engrauris japonica) 가수분해물의 쓴맛 개선 최적화)

  • Yoon, In Seong;Kim, Jin-Soo;Lee, Jung Suck;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.724-732
    • /
    • 2021
  • This study used response surface methodology to investigate the optimal conditions to reduce the bitterness of alcalase-treated anchovy hydrolysate (AAH) by the aminopeptidase active fraction (AAF) derived from the common squid Todarodes pacificus hepatopancreas. The central composite design selected AAF/AAH ratio (X1, %) and hydrolysis time (X2, h) as independent variables, and the degree of hydrolysis (Y1) and bitterness (Y2) as dependent variables. The uncoded values of the multiple response optimization for independent variables were 3.4% for the AAF/AAH ratio and 9.2 h for the hydrolysis time. The predicted values of the yield and bitterness score of alcalase-AAF continuously treated anchovy hydrolysate (AAAH) under the optimized conditions were 68.9% and 4.6 points, respectively. Their measured values of 69.5% for yield and 4.6±0.5 points for bitterness were similar to the predicted values. The food components of AAAH were 91.4% (moisture), 7.5% (protein), 0.1% (lipid) and 0.6% (ash). The findings indicate the potential value for use as an anchovy seasoning base. The results also confirm that the bitterness of AAH was remarkably improved by AAF and implicates AAF derived from squid hepatopancreas as a good enzyme to catalyze reduced bitterness.

Reaction of Sodium Diethyldihydroaluminate with Selected Organic Compounds Containing Representative Functional Groups

  • Yoon Nung Min;Shon Young Seok;Ahn Jin Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess sodium diethyldihydroaluminate (SDDA) with 68 selected organic compounds containing representative functional groups were examined under standard conditions (THF-toluene, $0^{\circ}C$ in order to compare its reducing characteristics with lithium aluminum hydride (LAH), aluminum hydride, and diisobutylaluminum hydride (DIBAH) previously examined, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, thiols and amines evolve hydrogen rapidly and quantitatively. Aldehydes and ketones of diverse structure are reduced rapidly to the corresponding alcohols. Reduction of norcamphor gives 11% exo-and 89% endo-norborneol. Conjugated aldehydes such as cinnamaldehyde are rapidly and cleanly reduced to the corresponding allylic alcohols. p-Benzoquinone is mainly reduced to hydroquinone. Hexanoic acid and benzoic acid liberate hydrogen rapidly and quantitatively, however reduction proceeds very slowly. Acid chlorides and esters tested are all reduced rapidly to the corresponding alcohols. However cyclic acid anhydrides such as succinic anhydride are reduced to the lactone stage rapidly, but very slowly thereafter. Although alkyl chlorides are reduced very slowly alkyl bromides, alkyl iodides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced very slowly; however, tertiary amides take up 1 equiv of hydride rapidly. Tertiary amides could be reduced to the corresponding aldehydes in very good yield ( > 90%) by reacting with equimolar SDDA at room temperature. Hexanenitrile is reduced moderately accompanying 0.6 equiv of hydrogen evolution, however the reduction of benzonitrile proceeds rapidly to the imine stage and very slowly thereafter. Benzonitrile was reduced to give 90% yield of benzaldehyde by reaction with 1.1 equiv of hydride. Nitro compounds, azobenzene and azoxybenzene are reduced moderately at $0^{\circ}C$, but nitrobenzene is rapidly reduced to hydrazobenzene stage at room temperature. Cyclohexanone oxime is reduced to the hydroxylamine stage in 12 h and no further reaction is apparent. Pyridine is reduced sluggishly at $0^{\circ}C$, but moderately at room temperature to 1,2-dihydropyridine stage in 6 h; however further reaction is very slow. Disulfides and sulfoxides are reduced rapidly, whereas sulfide, sulfone, sulfonic acid and sulfonate are inert under these reaction conditions.

Effects of Injection Molding Parameters and their Interactions on Mechanical Properties of PMMA/PC Blend

  • Hoang, Van Thanh;Luu, Duc Binh;Toan Do, Le Hung;Tran, Ngoc Hai;Nguyen, Pham The Nhan;Tran, Minh Sang;Tran, Minh Thong
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.650-654
    • /
    • 2020
  • A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

The Production of Xanthan from Brewer's Spent Grain

  • Rajiv Chetia;Bhriganka Bharadwaj;Rahul Dey;Biswa Prasun Chatterji
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.449-456
    • /
    • 2023
  • Sugar or dextrose increases the cost of production of xanthan gum by Xanthomonas campestris. Brewers' Spent Grain (BSG) was chosen as a source of fermentable sugars. BSG is a significant industrial by-product generated in large quantities from the breweries. Primarily used as animal feed due to its high fiber and protein content, BSG holds great potential as an economically and ecologically sustainable substrate for fermenting biomolecules. This study explores BSG's potential as a cost-effective carbon source for producing xanthan, utilizing Xanthomonas campestris NCIM 2961. An aqueous extract was prepared from BSG and inoculated with the bacterium under standard fermentation conditions. After fermentation, xanthan gum was purified using a standard protocol. The xanthan yield from BSG media was compared to that from MGYP media (control). The fermentation parameters, including pH, temperature, agitation and duration were optimized for maximum xanthan gum yield by varying them at different levels. Following fermentation, the xanthan gum was purified from the broth by alcoholic precipitation and then dried. The weight of the dried gum was measured. The obtained xanthan from BSG under standard conditions and commercial food-grade xanthan were characterized using FTIR. The highest xanthan yields were achieved at 32 ℃, pH 6.0, and 72 h of fermentation at 200 rpm using BSG media. The FTIR spectra of xanthan from BSG media closely resembled that of commercial food-grade xanthan. The results confirm the potential of BSG as a cost-effective alternative carbon source for xanthan production, thereby reducing production costs and solid waste.

Preparation and Improvement of Physicochemical and Functional Properties of Dietary Fiber from Corn Cob Fermented by Aspergillus niger

  • Yadi Zhou;Qijie Sun;Chao Teng;Mingchun Zhou;Guangsen Fan;Penghui Qu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.330-339
    • /
    • 2024
  • Corn cobs were fermented with Aspergillus niger to produce soluble dietary fiber (SDF) of high quality and excellent food safety. In this work, the fermentation process was optimized by single-factor test and response surface methodology (RSM). The optimal fermentation conditions were determined to be a material-liquid ratio of 1:30, an inoculum concentration of 11%, a temperature of 32℃, a time of 6 days, and a shaking speed of 200 r/min. Under these conditions, the SDF yield of corn cob increased from 2.34% to 11.92%, and the ratio of soluble dietary fiber to total dietary fiber (SDF/TDF) reached 19.08%, meeting the requirements for high-quality dietary fiber (SDF/TDF of more than 10%). Scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR) analysis revealed that the fermentation effectively degraded part of cellulose and hemicellulose, resulting in the formation of a loose and porous structure. After fermentation the water swelling capacity, water-holding capacity, and oil-holding capacity of the corn cob SDF were significantly improved and the adsorption capacity of glucose, cholesterol, and nitrite ions all increased by more than 20%. Moreover, the total phenolic content increased by 20.96%, which correlated with the higher antioxidant activity of SDF. Overall, the fermentation of corn cobs by A. niger increased the yield and enhanced the functional properties of dietary fiber (DF) as well.

Changes of Dry Matter Productivity and Feed Value of Forage Barley and Italian Ryegrass According to Cultivation Conditions in Mid-west Plain of Korea (중서부 평야지에서 재배조건에 따른 청보리와 이탈리안 라이그라스의 건물생산성 및 사료가치 변화)

  • Seo, Jong Ho;Kwon, Young Up;Cho, Ga Ok;Han, Ouk Kyu;Gu, Ja Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.84-90
    • /
    • 2018
  • Cultivation of high-quality forage crop by using fallow field during winter is required for national high feed self-sufficiency and establishment of self-supply system of high-quality forage crop. Field experiments for cultivation of high-quality winter forage crop were conducted at the paddy and upland fields in Cheonan and Anseong city with treatments of single Italian ryegrass(IRG) and IRG mixed with forage barley at the paddy field and of single forage barley and forage barley mixed with IRG at the upland field in the Mid-west plain. Several cultivation conditions such as broadcasting IRG seed under standing rice, sowing time, tillage method, drainage condition, mixed sowing with forage barley were compared to know the change of growth, yield and quality of winter forage crop. In particular, over-wintering rate and dry matter yield were decreased significantly in late-sown IRG and moisture-stressed forage barley. Yield and quality of forage crops were increased by sowing after tillage, mixed sowing of IRG with barley at the paddy field with good drainage. High yield as much as dry matter $10MT\;ha^{-1}$ with high feed value could be obtained by early sowing of feed barley mixed with IRG at the upland field. Cultivation conditions such as early sowing, sowing after tillage, drainage management are required for higher dry matter yield, quality and stable cultivation of winter forage crops in the mid-west plain of Korea.

Change in Yield and Quality Characteristics of Rice by Flooding during the Ripening Stage (벼 등숙기 침관수 피해에 따른 수량 및 품질 특성 변화)

  • Lee, Hyeon-Seok;Hwang, Woon-Ha;Jeong, Jae-Hyeok;Ahn, Seung-Hyeon;Baek, Jeong-seon;Jeong, Han-Yong;Park, Hong-kyu;Ku, Bon-il;Yun, Jong-Tak;Lee, Geon-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • The increase in the frequency of occurrence of abnormal weather could include severe rainfall, which could cause rice submergence during the ripening stage. This experiment was conducted to clarify the effects of submergence during the ripening period on yield and quality of rice. The flooding treatment was conducted at 7 and 14 days after heading. Flooding conditions were created with two conditions, flag leaf exposed and overhead flooding, and each condition was divided into two conditions according to water quality-clear and muddy. Although the yield decrease was more severe at 7 days after heading because of the decrease in the ripening ratio, the head rice ratio was more affected at 14 days after heading because of the increase in the chalky kernel ratio. The maximum quantum yield (Fv/Fm), which indicates the photosynthetic efficiency, did not differ before and after the flooding treatment until flooding continued for 4 days. In addition, stem elongation occurred because of flooding as an avoidance mechanism in japonica rice. This phenomenon was expected to decrease the supply of assimilation products to the spikelet (sink). Overall, it was suggested that additional experiments should be conducted examining the change in the starch synthesis mechanism and transfer of assimilate products resulting from submergence, for development of cultivation techniques corresponding to submergence and breeding of varieties with submergence tolerance characteristics.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Development of Canonical Fractional-Step Methods and Consistent Boundary Conditions for Computation of Incompressible Flows (비압축성유동의 수치계산을 위한 표준분할단계방법 및 일관된 경계조건의 개발)

  • Lee, Moon-J.;Oh, Byung-Do;Kim, Young-Bae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.404-409
    • /
    • 2001
  • An account of second-order fractional-step methods and boundary conditions for the incompressible Navier-Stokes equations is presented. The present work has aimed at (i) identification and analysis of all possible splitting methods of second-order splitting accuracy; and (ii) determination of consistent boundary conditions that yield second-order accurate solutions. It has been found that only three types (D, P and M) of splitting methods called the canonical methods are non-degenerate so that all other second-order splitting schemes are either degenerate or equivalent to them. Investigation of the properties of the canonical methods indicates that a method of type D is recommended for computations in which the zero divergence is preferred, while a method of type P is better suited to the cases when highly-accurate pressure is more desirable. The consistent boundary conditions on the tentative velocity and pressure have been determined by a procedure that consists of approximation of the split equations and the boundary limit of the result. The pressure boundary condition is independent of the type of fractional-step methods. The consistent boundary conditions on the tentative velocity were determined in terms of the natural boundary condition and derivatives of quantities available at the current timestep (to be evaluated by extrapolation). Second-order fractional-step methods that admit the zero pressure-gradient boundary condition have been derived. The boundary condition on the new tentative velocity becomes greatly simplified due to improved accuracy built in the transformation.

  • PDF