• Title/Summary/Keyword: yellow poplar (Liriodendron tulipifera)

Search Result 44, Processing Time 0.021 seconds

Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production (바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Gwak, Ki-Seob;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.397-405
    • /
    • 2009
  • In this study, we investigated the potential of producing bioethanol from Liriodendron tulipifera by using oxalic acid pretreatment. Amounts of fermentable sugars, mostly xylose and glucose, in the liquid fraction (hydrolysate) was $40.22g/{\ell}$ after the biomass was pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$. Production amounts of ethanol was $8.6g/{\ell}$ from the 72 hours of simultaneous saccharification and fermentation (SSF) on solid fraction of the pretreated sample. At the same condition, when the reaction time increased to 40 minutes, $32.66g/{\ell}$ of fermentable sugars in the hydrolysate and $9.5g/{\ell}$ of ethanol was produced from the process of pretreatment and SSF. As a result of analyzing the fermentation inhibitors, such as acetic acid, 5-HMF, furfural and total phenolic compounds, as the reaction time increased, the amount of the fermentation inhibitors in the hydrolysate increased. Production of the fermentation inhibitors was more affected by initial concentration of oxalic acid rather than reaction time. $3.39{\sim}5.78g/{\ell}$ of acetic acid was produced by pretreatment with 0.013 g/g of oxalic acid, and the amount of furfural produced by decomposition of xylose was 2~3 times higher than the amount of 5-HMF produced by decomposition of glucose. All the hydrolysates contained more than $5g/{\ell}$ of total phenols considered as the degradation product of lignin. Therefore, by analyzing the amount of fermentable sugars and fermentation inhibitors in the hydrolysate, and producing ethanol from SSF of solid fraction of the pretreated sample, the biomass pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$ can be expected to produce the most ethanol.

Comparison of Physiological Characteristics, Stomata and DNA Content between Seedling and 5-year-old Somatic Plant (Somatic Embryo Derived-plant) in Liriodendron tulipifera (백합나무 5년생 실생묘 및 체세포묘 (체세포배 유래 식물체) 간의 생리적 요인, 기공 및 DNA 함량 비교)

  • Kim, Yong Wook;Moon, Heung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.537-542
    • /
    • 2013
  • Field performance of somatic plants (somatic embryo derived-plants) of yellow-poplar (Liriodendron tulipifera) produced from somatic embryogenesis was compared with that of seedlings at age 5. In comparison of photosynthetic rate (seedling, $10.67{\mu}mol$ $CO_2m^{-2}s^{-1}$; somatic plant, $9.04{\mu}mol$ $CO_2m^{-2}s^{-1}$), stomatal conductance rate (seedling, 0.2 $H_2Om^{-2}s^{-1}$; somatic plant, 0.166 $H_2Om^{-2}s^{-1}$) and respiration rate (seedling, 1.71 mmol $H_2Om^{-2}s^{-1}$; somatic plant, 1.513 mmol $H_2Om^{-2}s^{-1}$), no significant differences were found between plants. The seedlings were a little higher in comparison of stomatal density (seedling, $23.33/mm^2$; somatic plant, $22.43/mm^2$), length (seedling, $25.83{\mu}m$; somatic plant, $23.46{\mu}m$) and width (seedling, $15.87{\mu}m$; somatic plant, $15.3{\mu}m$). In comparison of DNA content of the leaves using flow cytometry, no differences in ploidy level were found between the seedlings and somatic plants.

Effects of ABA, reduced nitrogen source and osmoticum for somatic embryogenesis in Liriodendron tulipifera (백합나무의 체세포배 유도에 미치는 ABA, 환원질소원 및 삼투압제 효과)

  • Kim, Yong-Wook;Han, Mu-Seok;Moon, Heung-Kyu;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.186-190
    • /
    • 2011
  • This study was conducted to evaluate effects of various kinds or concentrations in abscisic acid (ABA), reduced nitrogen sources (casein hydrolysate, casamino acid and L-glutamine) and osmoticum for production of somatic embryos (SEs) from pro-embryogenic mass (PEM) in yellow poplar (Liriodendron tulipifera). In comparison of various concentrations of ABA, the highest number (640/10 mg PEM) of SEs was marked in the treatment of 0.5 mg/L. With higher concentration than 0.5 mg/L ABA, number of induced SEs were decreased. And the lowest number of SEs were obtained from the treatment of 20 mg/L ABA. Differences of 8 treatments of the nitrogen sources in the medium were also compared. In the experiment of 8 treatments for SEs production, the highest result showed in the treatment of 500 mg/L casamino acid (223/5 mg PEM). In comparison of different kinds/concentrations of osmotica for SEs induction, the best response was obtained from the treatment of 4% sucrose (317/5 mg PEM). In contrast, no SEs were found from the treatments supplemented with any concentrations of maltose.

Estimation of Nitrogen Storage Potential and Aboveground Biomass of Tree Species Treated with Liquid Pig Manure (양돈분뇨 처리에 따른 수목의 질소저장 및 지상부 바이오매스 추정)

  • Kim, Hyun-Chul;Yeo, Jin-Kie;Shin, Hanna;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.715-721
    • /
    • 2011
  • This study was conducted to estimate aboveground biomass and nitrogen storage potential of tree species-eight clones of a poplar and hybrids, one clone of Salix alba L., dawn redwood (Metasequoia glyptostroboides Hu and W.C. Cheng), yellow poplar (Liriodendron tulipifera L.), Okamoto maple (Acer okamotoanum Nakai), and pin oak (Quercus palustris $M{\ddot{u}}nchh.$)- after treating with liquid pig manure. Stems showed the highest percentage of aboveground biomass, and followed by branches and leaves. Nitrogen content in aboveground biomass components was the highest in leaves, and followed by branches and stems. Average aboveground biomass production was higher in the clones and species treated with manure than those of not treated, 30 ton/ha and 16 ton/ha, respectively. In the manure-treated site, clone 'Dorskamp' of Populus deltoides${\times}$Populus nigra showed the highest aboveground biomass (48.3 ton/ha). Average nitrogen storage potential was superior in the clones and species treated with manure than those of not treated, 159 kg/ha and 90 kg/ha, respectively. Clone 'Dorskamp' also showed the greatest nitrogen storage potential (286.5 kg/ha) among tested tree species. Therefore, 'Dorskamp' is the most suitable clone for treating liquid pig manure, but additional studies are needed to determine any damages or tolerance from the treatment.

Morphological and Physiological Characteristics of Acclimated Liriodendron tulipifera Tree Produced by Several Types of In Vitro Germination Culture (백합나무 체세포배 기내발아 방식에 따른 순화묘의 형태적 및 생리적 특성)

  • An, Chan Hoon;Yi, Jae Seon;Moon, Heung Kyu;Kim, Yong Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.158-162
    • /
    • 2012
  • The acclimatization of in vitro propagated plants is an important step to produce vigorous plants for clonal forestry and in vitro micro-environment may affect the growth in ex vitro condition. To monitor in vitro environmental effects on the growth in ex vitro condition, several culture systems such semi-solid medium(SS), temporary immersion bioreactor(TIB) and continuous immersion bioreactor(CIB) culture types were tested to compare for the growth of acclimated plants of Liriodendron tulipifera. Results suggested that morphological characters, stomatal conductance, evapotranspiration and chlorophyll contents of acclimated plants were affected by the different of in vitro culture conditions. CIB type of culture was resulted to the lowest value in the biomass of acclimated plants. Net photosynthsis rate of CIB was the same level as those of SS and TIB. However, stomatal conductance, evapotranspiration and $CO_2$ partial pressure in the intercellular air space were lower than those of SS and TIB. The amounts of chlorophyll a, b and carotenoids were also lower than those of the other two culture systems. TIB, showing a little lower or higher value than SS in many growth character, is recommended rather than CIB to produce healthy yellow poplar plants in ex situ condition.

Effect of Diluted H2SO4 and NaOH Treatment on Chemical Composition of Larch and Yellow Poplar (황산 및 수산화나트륨처리가 낙엽송과 백합나무의 주요 화학조성에 미치는 영향)

  • Lee, Soo-Min;Lee, A-Ram;Ahn, Byoung Jun;Kim, Yong Sik;Yang, In;Cho, Sung Taig
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.358-373
    • /
    • 2013
  • In this study, both mild acid and alkali treatments with 1.0 wt% and 2.0 wt% of $H_2SO_4$ and NaOH solution were applied to evaluate the effects on chemical compositions of wood biomass. Yellow poplar (Liriodendron tulipifera L.) and larch (Larix kaempferi C.) were chosen due to major species planted in Korea. Chemical treatments of biomass were carried out by being soaked in either acid or alkali solution with 1:20 ratio for 72 hours at ambient temperature. Afterward, lignin, 5 major reduced sugars, ash contents and elemental composition were determined. To statistically understand the relationship between samples and chemical treatments, the Tukey test, simple linear regression model and ANOVA analysis were introduced using a statistical software R. As results from both wet chemistry and statistical analysis, yellow poplar was more affected on the lignin and xylose contents by acid treatments under these experimental conditions. Meanwhile, larch was more affected on the composition of galactose and lignin by alkali treatments. A series of results in this study would show that equivalent chemical treatment makes a change the chemical composition of each species.

Color Control and Durability Improvement of Yellow Poplar (Liriodendron tulipifera) by Heat Treatments (열처리에 의한 백합나무 재색 제어와 내부후성 제고)

  • Yoon, Kyung-Jin;Eom, Chang-Deuk;Park, Jun-Ho;Kim, Ho-Yong;Choi, In-Gyu;Lee, Jun-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.487-496
    • /
    • 2009
  • The sapwood of yellow poplar is very bright while its heartwood is usually greenish which changes to dark brown with weathering. This difference in color value between sapwood and heartwood causes difficulty in using yellow poplar as higher value added materials such as interior finish and furniture part. In this study, hot-water treatment, vacuum-heat treatment and oven-heat treatment were carried out to reduce the difference in color value between heartwood and bright sap wood and to increase durability. FT-IR analysis, contact angle measurement and decay test were carried out to find out the mechanism of functional group change and the increment of durability by heat treatment. The result of decrement ratio of color difference were 45.7% by hot-water treatment, 26.8% by vacuum-heat treatment, and 60.2%, 87.8%, and 88.8% by $180^{\circ}C$, $200^{\circ}C$ and $220^{\circ}C$ oven-heat treatments respectively. Furthermore, it has been found that oven-heat treatment causes decrement of mass loss by decay in this study. It is suggested that oven-heat treatment could be environmentally friendly preservative treatment without chemicals.

Study on the Physical and Mechanical Properties of Particleboard and Oriented Strandboard Manufactured by Tulliptree (Liriodendron tulipifera L.) (백합나무를 이용하여 제조한 3층 파티클보드와 배향성 스트랜드보드(OSB)의 물성에 관한 연구)

  • Seo, Jun won;Gang, Gil woo;Jo, Gun hee;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.67-72
    • /
    • 2018
  • This study was conducted to investigate a potential of Yellow poplar (Liriodendron tulipifera L.) as a raw material for the manufacturing of particleboard (PB) and oriented strandboard (OSB). PB panels were prepared at the parameters of $0.7g/cm^3$ density, 15 mm thickness, three-layer, $E_1$ grade urea-formaldehyde (UF) resin, emulsion wax, and hardener. OSB panels were manufactured with a density of $0.65g/cm^3$, thickness of 10 mm, and $E_1$ grade of UF resin. Particle size of the face layer of PB was 20~80 mesh with 7~9% moisture content (MC), while that of core-layer was 3~20 mesh with 3~5% MC, which was similar to the production condition of commercial PB. As a result, the manufactured PB panels with 15.8 mm thickness, $0.7g/cm^3$ density, and 5.8% MC satisfied the requirement of bending strength of 15 type PB of Korean Industrial Standard (KS F 3104). Both internal bonding (IB) strength and surface screw withdrawal resistance also satisfied the requirement of 18 type PB of the standard. But, the edge screw withdrawal resistance satisfied the requirement of 15 type PB of the standard. These differences in properties could be due to the slenderness ratio of raw particles. In case of OSB panels with 10.7 mm thickness, $0.68g/cm^3$ density, and 5.8% MC satisfied all the requirements of bending strength, screw withdrawal resistance, and IB strength of 18 type PB of the standard. These results suggest that Yellow poplar wood has a good potential as a raw material for the production of PB and OSB.

The Effects of Organic Manure and Chemical Fertilizer Application Levels on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) Seedlings (유기질 및 화학비료 처리수준이 어린 백합나무 생장 및 양분농도에 미치는 영향)

  • Han, Si Ho;An, Ji Young;Choi, Hyung-Soon;Cho, Min Seok;Park, Byung Bae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.37-48
    • /
    • 2015
  • Soil nutrient management is important to maintain the constant productivity of seedling production in the nursery for successful forest restoration. This study investigated the effects of organic manure and chemical fertilizer application levels on the growth, soil properties, and nutrient concentrations of yellow poplar seedlings. One-year-old yellow poplar seedlings were treated with the combination of 3 level organic manures(0, 5 Mg/ha, 10 Mg/ha; mixture of poultry manure, cattle manure, swine manure, and sawdust) and 3 level nitrogen-phosphorus-potassium(NPK) chemical fertilizers(0, 1x(urea, $30g/m^2$; fused superphosphate, $70g/m^2$; potassium chloride, $15g/m^2$), 2x). Organic manure significantly increased the soil pH and the concentrations of nitrogen, available phosphorous, exchangeable potassium, calcium, and magnesium. In contrast, the NPK chemical fertilizer decreased the soil pH and exchangeable calcium concentration, did not affect the soil concentrations of nitrogen and magnesium, and increased the concentrations of available phosphorous and exchangeable potassium. Both organic manure and NPK chemical fertilizer treatments increased the seedling height, root collar diameter, and dry weight by 39% and 25%, respectively. The treatment with manure 5 Mg/ha and NPK 2x chemical fertilizer mostly increased seedling dry weight by 2.6 times more than that of the control. Compared to the effects of the fertilization treatments on the soil properties, the effects on nutrient concentrations in the leaves were relatively small. These findings indicate that organic manure that was derived from livestock byproducts and sawdust can be utilized with chemical fertilizer to improve seedling production as well as conserving soil quality.

Effects of Elevated Atmospheric CO2 and Nitrogen Fertilization on Growth and Carbon Uptake of Yellow Poplar Seedlings (대기 이산화탄소 증가와 질소 시비가 백합나무 유묘의 생장과 탄소 흡수에 미치는 영향)

  • Chung, Mi-Sook;Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.3
    • /
    • pp.108-118
    • /
    • 2012
  • To investigate the responses of yellow poplar (Liriodendron tulipifera L.) seedlings to the interactive effects of the elevated atmospheric $CO_2$ level and nitrogen addition, we measured biomass, photosynthetic pigments, photosynthesis, and the contents of nitrogen (N) and carbon (C) from the seedlings after 16 weeks of the treatments. Yellow poplar seedlings were grown under the ambient ($400{\mu}mol\;mol^{-1}$) and the elevated (560 and $720{\mu}mol\;mol^{-1}$) CO2 concentratoins with three different N addition levels (1.2, 2.4, and $3.6g\;kg^{-1}$) in the Open Top Chambers (OTC). The dry weight of the seedlings enhanced with the increased N levels under the elevated $CO_2$ concentrations and the increment of the dry weight differed among the different N levels. Photosynthetic pigment content of the yellow poplar leaves also increased with the increase of the $CO_2$ concentration levels. The effects of the N levels on the photosynthetic pigment content, however, were significantly different among the $CO_2$ levels. Photosynthetic rates were affected by the levels of $CO_2$ and N concentrations. Stomatal conductance and transpiration rates increased with increasing $CO_2$ concentration. The carboxylation efficiency of the seedlings without N addition increased under the higher $CO_2$ concentrations whereas that with N addition decreased under the elevated $CO_2$ concentrations. Nitrogen and carbon uptake in leaf, stem, and root increased with the elevated $CO_2$ concentration level and N addition. In conclusion, under the elevated $CO_2$ concentrations, physiological characteristics and carbon uptake of the yellow poplar seedling were improved and increased with N addition.