Morphological and Physiological Characteristics of Acclimated Liriodendron tulipifera Tree Produced by Several Types of In Vitro Germination Culture

백합나무 체세포배 기내발아 방식에 따른 순화묘의 형태적 및 생리적 특성

  • An, Chan Hoon (Department of Forest Resources, Graduate School, Kangwon National University) ;
  • Yi, Jae Seon (College of Forest and Environmental Sciences, Kangwon National University) ;
  • Moon, Heung Kyu (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Kim, Yong Wook (Division of Forest Biotechnology, Korea Forest Research Institute)
  • 안찬훈 (강원대학교 대학원 산림자원학과) ;
  • 이재선 (강원대학교 산림환경과학대학) ;
  • 문흥규 (국립산림과학원 산림생명공학과) ;
  • 김용욱 (국립산림과학원 산림생명공학과)
  • Published : 2012.03.31

Abstract

The acclimatization of in vitro propagated plants is an important step to produce vigorous plants for clonal forestry and in vitro micro-environment may affect the growth in ex vitro condition. To monitor in vitro environmental effects on the growth in ex vitro condition, several culture systems such semi-solid medium(SS), temporary immersion bioreactor(TIB) and continuous immersion bioreactor(CIB) culture types were tested to compare for the growth of acclimated plants of Liriodendron tulipifera. Results suggested that morphological characters, stomatal conductance, evapotranspiration and chlorophyll contents of acclimated plants were affected by the different of in vitro culture conditions. CIB type of culture was resulted to the lowest value in the biomass of acclimated plants. Net photosynthsis rate of CIB was the same level as those of SS and TIB. However, stomatal conductance, evapotranspiration and $CO_2$ partial pressure in the intercellular air space were lower than those of SS and TIB. The amounts of chlorophyll a, b and carotenoids were also lower than those of the other two culture systems. TIB, showing a little lower or higher value than SS in many growth character, is recommended rather than CIB to produce healthy yellow poplar plants in ex situ condition.

기내배양된 식물체의 순화는 클론임업을 위한 건전한 식물체 생산에 중요하며 기내의 미세환경이 차후 기외생장에 영향을 미친다. 기외생장에 미치는 기내 환경조건을 모니터링하기 위하여 백합나무 어뢰형 체세포배를 재료로 반고체배지(SS), 순간침지 생물반응기(TIB), 연속침지 생물반응기(CIB)에서 배양시키고 식물체를 재생하여 배양 방식에 따른 순화 식물체의 생장을 비교하였다. 결론적으로 기내배양 조건에 따라 차 후 순화 식물체의 형태적 특성, 기공전도도, 증산율 및 엽록소 함량에 영향을 받는 것으로 나타났다. CIB에서 배양된 식물체는 순화식물에서 바이오매스 생장이 가장 낮은 것으로 나타났다. CIB 배양 식물체의 순광합성율은 SS와 TIB 배양 식물체와 같은 것으로 나타났다. 그러나, 기공전도도, 증산율, 세포간 air space에서의 이산화탄소 부분압은 SS와 TIB 배양 식물체보다 낮은 것으로 나타났다. 결론적으로, TIB의 배양체는 여러 가지 생장특성에서 SS 배양체 보다 높거나 다소 낮은 값을 보여 SS, CIB 배양체보다 건전한 식물체 생산이 가능한 것으로 나타났다.

Keywords

References

  1. 문흥규, 김용욱, 박소영, 한무석, 이재선. 2010. 국내 임목류 기내증식 연구현황 및 전망. 한국식물생명공학회지 37(4): 343-356.
  2. 신윤정, 윤여중, 한은주, 백기엽. 2009. 팔레놉시스 기내 배양시 광도(PPF)가 묘의 생장, 광합성 및 순화에 미치는 영향. 한국원예과학회지 27(3): 476-481.
  3. 한석훈, 채영암. 2001. 생물반응기 생산 현삼 신초의 순화에 미치는 배지의 영향. 한국약용작물학회지 9(1): 62-67.
  4. George, E.F., Hall, M.A. and De Klerk, G.-J.H. (eds.). 2008. Plant propagation by tissue culture(3rd edition). Springer. pp. 115-174.
  5. Jo, M.H., Ham, I.K., Lee, M.A., Lee, E.M., Song, N.H., Han, G.H. and Woo, I.S. 2002. Effects of sealing materials and photosynthetic photon flux of culture vessel on growth and vitrification in carnation plantlets in vitro. Journal of the Korean Society for Horticultural Science 43(2): 133-136.
  6. Joshi, P., Joshi, N. and Purohit S.D. 2006. Stomatal characteristics during micrpropagation of Wrightia tomentosa. Biologia Plantarum 50(2): 275-278. https://doi.org/10.1007/s10535-006-0019-z
  7. Lee, J.S., Moon, H.K. and Kim, Y.W. 2003. Mass propagation of Liriodendron tulipifera L. via somatic embryogenesis. Korean Journal Plant Biotechnology 30(4): 359-363. https://doi.org/10.5010/JPB.2003.30.4.359
  8. Lichtenthaler, H.K. 1987. Chlorophyll and carotenoids, the pigments of photosynthetic biomembranes. In: Douce R., Packer L. (eds.) Methods Enzymol., Vol 148. Academic Press Inc., NewYork. pp. 350-382.
  9. Litvay, J.D., Johnson, M.A., Verma, D., Einspahr, D. and Weyrauch, K. 1981. Institute of Paper Chemistry Technical Paper Series, No. 115. Appleton, Wisconsin, USA. pp. 17.
  10. Lloyd, G. and McCown, B. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. The International Combined Proceeding, The International Plant Propagators Society 30: 421-427.
  11. Merkle, S.A. and Sommer, H.E. 1986. Somatic embryogenesis in tissues cultures of Liriodendron tulipifera. Candian Journal of Forest Resources 16: 420-422. https://doi.org/10.1139/x86-077
  12. Merkle, S.A. and Sommer, H.E. 1987. Regeneration of Liriodendron tulipifera (family Magnoliaceae) from protoplast culture. American Journal of Botany 74: 1317-1321. https://doi.org/10.2307/2444166
  13. Merkle, S.A., Wiecko, A.T., Sotak, R.J. and Sommer, H.E. 1990. Maturation and conversion of Liriodendron tulipifera somatic embryos. In Vitro Cellular & Developmental Biology-Plant 26(11): 1086-1093. https://doi.org/10.1007/BF02624445
  14. Merkle S. A., Hoey M. T., Watson-Pauley B. A., Schlarbaum S. E. 1993. Propagation of Liriodendron hybrids via somatic embryogenesis. Plant Cell Tissue and Organ Culture 34(2): 191-198. https://doi.org/10.1007/BF00036101
  15. Mohapatra, P.K., Patra, S., Samantray, P.K. and Mohanty, R.C. 2003. Effect of pyrethoroid insecticide cypermethrin on photosynthetic pigments of the cyanobacterium Anabaena doliolum Bhar. Polish Journal of Environmental Studies 12(2): 207-212.
  16. Nokwanda, P.M., Anna, K.J. and Ohannes van Staden. 2006. Improved in vitro rooting and hyperhydricity in regenerating tissues of Thapsia garganica L. Plant Cell Tissue and Organ Culture 86: 77-86. https://doi.org/10.1007/s11240-006-9100-8
  17. Pati, P.K., Rath, S.P., Sharma, M., Sood, A. and Ahuja, P.S. 2006. In vitro propagation of rose- a review. Biotechnology Advances 24: 94-114. https://doi.org/10.1016/j.biotechadv.2005.07.001
  18. Park, Y.S. and Bonga, J.M. 2011. Application of somatic embryogenesis in forest management and research. In: Park YS, Bonga JM, Park SY and Moon HK (eds.). Proceedings of the IUFRO Working Party 2. 09. 02. "Somatic Embryogenesis of Trees" conference on "Advances in Somatic Embryogenesis of Trees and Its Application for the Future Forests and Plantations". pp. 3-8.
  19. Reinert, J. 1959. Untersuchngen uber die Morphogenese an Gewebekulturen. Ber. Deutshc. Botanischen Gesellschaft 71: 15.
  20. Snyman, S.J., Nkwanyana, P.D. and Watt, M.P. 2011. Alleviation of hyperhydricity of sugarcane plantlets produced in $RITA^{(R)}$ vessel and genotypic and phenotypic characterization of acclimated plants. South African Journal of Botany 77: 685-692. https://doi.org/10.1016/j.sajb.2011.03.004
  21. Son, S.G., Moon, H.K., Kim, Y.W. and Kim, J.A. 2005. Effect of mother trees and dark culture condition affecting on somatic embrygenesis of Liriodendron tulipifera L. Korean Journal of Forest Society 94(1): 39-44.
  22. Steward, F.C., Mapes, M.O. and Mears, K. 1958. Growth and organized development of cultured cells. II: Organization in cultures grown from freely suspended cells. Amer. Americal Journal of Botany 45: 705-708. https://doi.org/10.2307/2439728
  23. Zhang, J. and Kirkham, M.B. 1996. Antioxidant response to drought in sunflower and sorghum seedling. New Phytology 132: 361-373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x