Effect of Oxalic Acid Pretreatment on Yellow Poplar (Liriodendron tulipifera) for Ethanol Production

바이오에탄올 생산에 적합한 백합나무(Liriodendron tulipifera)의 oxalic acid 전처리 효과 탐색

  • Kim, Hye-Yun (Dept. of Environmental Materials Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Jae-Won (Forest Products Laboratory, One Gifford Pinchod Drive) ;
  • Jeffries, Thomas W. (Forest Products Laboratory, One Gifford Pinchod Drive) ;
  • Gwak, Ki-Seob (Dept. of Environmental Materials Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Dept. of Environmental Materials Science, College of Agriculture & Life Sciences, Seoul National University)
  • 김혜연 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이재원 ;
  • ;
  • 곽기섭 (서울대학교 농업생명과학대학 산림과학부) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2009.04.22
  • Accepted : 2009.05.25
  • Published : 2009.07.25

Abstract

In this study, we investigated the potential of producing bioethanol from Liriodendron tulipifera by using oxalic acid pretreatment. Amounts of fermentable sugars, mostly xylose and glucose, in the liquid fraction (hydrolysate) was $40.22g/{\ell}$ after the biomass was pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$. Production amounts of ethanol was $8.6g/{\ell}$ from the 72 hours of simultaneous saccharification and fermentation (SSF) on solid fraction of the pretreated sample. At the same condition, when the reaction time increased to 40 minutes, $32.66g/{\ell}$ of fermentable sugars in the hydrolysate and $9.5g/{\ell}$ of ethanol was produced from the process of pretreatment and SSF. As a result of analyzing the fermentation inhibitors, such as acetic acid, 5-HMF, furfural and total phenolic compounds, as the reaction time increased, the amount of the fermentation inhibitors in the hydrolysate increased. Production of the fermentation inhibitors was more affected by initial concentration of oxalic acid rather than reaction time. $3.39{\sim}5.78g/{\ell}$ of acetic acid was produced by pretreatment with 0.013 g/g of oxalic acid, and the amount of furfural produced by decomposition of xylose was 2~3 times higher than the amount of 5-HMF produced by decomposition of glucose. All the hydrolysates contained more than $5g/{\ell}$ of total phenols considered as the degradation product of lignin. Therefore, by analyzing the amount of fermentable sugars and fermentation inhibitors in the hydrolysate, and producing ethanol from SSF of solid fraction of the pretreated sample, the biomass pretreated with 0.037 g/g of oxalic acid for 20 minutes at $160^{\circ}C$ can be expected to produce the most ethanol.

본 연구에서는 국내 조림 수종인 백합나무를 바이오에탄올 생산용 자원으로 이용하고자 oxalic acid 전처리 방법을 도입하여 가능성을 타진하였다. $160^{\circ}C$에서 0.037 g/g oxalic acid로 20분 전처리하였을 때 $40.22g/{\ell}$의 발효가능한 당을 생산하였으며, 처리된 고형 바이오매스를 이용하여 동시당화발효를 수행한 결과 72시간 후 $8.6g/{\ell}$의 에탄올을 생산하였다. 같은 조건에서 반응시간을 증가시켜 40분 처리하였을 때 $32.66g/{\ell}$의 발효가능한 당을 생산하였고 동시당화발효로 72시간 후 $9.5g/{\ell}$의 에탄올을 생산하였다. 가수분해산물을 분석한 결과, 같은 조건에서 반응시간이 증가함에 따라 acetic acid, 5-HMF, furfural, total phenols와 같은 발효저해물질이 증가하였다. 이와 같은 발효저해물질은 반응시간보다는 초기 oxalic acid 첨가량에 영향을 받았다. Acetic acid 생산량은 저농도(0.013 g/g)의 oxalic acid를 사용하였을 때 $3.39{\sim}5.78g/{\ell}$로 나타났으며 xylose 분해산물인 furfural은 glucose의 분해산물인 5-HMF보다 2~3배 많게 가수분해산물에 존재하였다. 리그닌 분해산물로 예측되는 total phenols는 모든 조건에서 $5g/{\ell}$ 이상이 검출되었다. 가수분해산물과 동시당화발효로부터 에탄올 생산량을 분석한 결과 0.037 g/g oxalic acid로 20분 전처리한 가수분해산물과 고형 바이오매스로부터 가장 높은 에탄올 생산을 예측할 수 있다.

Keywords

Acknowledgement

Supported by : 산림청

References

  1. Allen, S. G., D. Schulman, J. Lichwa, M. J. Altal, E. Jennings, and R. Elander. 2001. A comparison of aqueos and dilute-acid-single-temperature pretreatment of yellow poplar sawdust. Ind. Eng. Chem. Res. 40(10): 2352∼2361 https://doi.org/10.1021/ie000579+
  2. Ando, S., I. Arai, K. Kiyoto, and S. Hanai. 1986. Identification of aromatic monomers in steamexploded poplar and their influence on ethanol fermentation. J. Ferment. Technol. 64: 567∼570 https://doi.org/10.1016/0385-6380(86)90084-1
  3. Clark, T. and K. L. Mackie. 1984. Fermentation ingibitors in wood hydrolysates derived from the softwood Pinus radiate. J. Chem. Biotechnol. 34:101∼110 https://doi.org/10.1002/jctb.280340206
  4. Delgenes, J. P., R. Moletta, and J. M. Navarro. 1996. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220∼225 https://doi.org/10.1016/0141-0229(95)00237-5
  5. Fengel, D. and G. Wegener, 1989. Polyoses (Hemicelluloses).In: Wood: chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter & Co.: pp.106∼131
  6. Heer, D. and U. Sauer. 2008. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology 1 (6): 497∼506 https://doi.org/10.1111/j.1751-7915.2008.00050.x
  7. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Kewelo, and J. A. M. de Bont. 1994. Mechanism of resistance of whole cells to toxic organic solvents. TIBTECH 12: 409∼415 https://doi.org/10.1016/0167-7799(94)90029-9
  8. Kenealy, W., E. Horn, and C. Houtman. 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 1. Energy saving and improved pulps. Holzforschung 61: 223$\sim$229 https://doi.org/10.1515/HF.2007.040
  9. Kootstra, A. M. J., N. S. Mosier, E. L. Scott, H. H. Beeftink, and J. P. M. Sanders. 2009. Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem. Engine. J. 43: 92∼97 https://doi.org/10.1016/j.bej.2008.09.004
  10. Larsson, S., E. Palmqvist, B. Hahn-Hägerdal, C. Tengborng, K. Stenberg, G. Zacchi, and N. Nilverbrant. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24:151∼159 https://doi.org/10.1016/S0141-0229(98)00101-X
  11. Meyer-Pinson, V., K. Ruel, F. Gaudard, G. Valtat, M. Petit-Conil, and B. Kurek. 2004. Oxalic acid: a microbial metabolite of interest for the pulping industry. Plant biology and pathology 327: 917∼925 https://doi.org/10.1016/j.crvi.2004.07.007
  12. Palmqvist, E. and B. Hahn-Hagerdal. 2000. Fermentation of lignocllulosic hydrolysates. II : inhibitors and mechanisms of inhibition. Bioresouce Technology 74: 25∼33 https://doi.org/10.1016/S0960-8524(99)00161-3
  13. Palmqvist, E., J. Almeida, and B. Hahn-Hagerdal. 1999. Mainand interaction effects of acetic acid, furfural and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol. Bioeng. 63: 46∼55 https://doi.org/10.1002/(SICI)1097-0290(19990405)63:1<46::AID-BIT5>3.0.CO;2-J
  14. Pfeifer, P. A., G. Bonn, and O. Bobbleter. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Sacch aromyces carlsbergensis W. Biotechnol. Lett. 6:541∼546 https://doi.org/10.1007/BF00139999
  15. Saha, B. C. and M. A. Cotta. 2008. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass and Bioenergy 32: 971∼977 https://doi.org/10.1016/j.biombioe.2008.01.014
  16. Sasner, P., M. Galbe, and G. Zacchi. 2008. Technoeconomic evaluation of bioethanol production from three different lgnocellulosic materials. Biomass and Bioenergy 32: 422∼430 https://doi.org/10.1016/j.biombioe.2007.10.014
  17. Scalbert, A., B. Monties, and G. Janin. 1989. Tannins in wood: comparison of different estimateion methods. J. Agric. Food. Chem. 37(5): 1324∼1329 https://doi.org/10.1021/jf00089a026
  18. Shimada, M., D. B. Mad, Y. Akamatsu, and T. Hattor. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS microbiol. Rev. 13: 285∼296 https://doi.org/10.1111/j.1574-6976.1994.tb00049.x
  19. Shimizu, K. 1991. Chemistry of hemicelluloses. In: Wood and cellulosic chemistry. New York and Basel: Marcel Dekker, Inc.: p. 177∼214
  20. Teramoto, Y., S. Lee, and T. Endo. 2008. Pretreatment Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology 18:8856∼8863 https://doi.org/10.1016/j.biortech.2008.04.049
  21. Valerie, M. P., K. Ruel, F. Gaudard, G. Valtat, M. Petit-Conil, and B. Kurek. 2004. Oxalic acid: a microbial metabolite of interest for the pulping industry. Comptes Rendus Biologies. 327: 917∼925 https://doi.org/10.1016/j.crvi.2004.07.007
  22. Wingre, A., M. Galbe, and G. Zacchi. 2008. Energy consideration for a SSF-based softwood ethanol plant. Bioresource Technology 99: 222∼231 https://doi.org/10.1016/j.biortech.2006.11.026
  23. Wyman, C. E. 1999. Biomass ethanol: technical progress, opportunities and commercial challenges. Annu. Rev. Eng. Environ. 24: 189∼226 https://doi.org/10.1146/annurev.energy.24.1.189
  24. Yat, S., A. Berger, and D. R. Shonnard. 2008. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass. Bioresource Technology 99: 3855∼3863 https://doi.org/10.1016/j.biortech.2007.06.046
  25. Yemshanov, D. and D. McKenney. 2008. Fastgrowing poplar plantations as a bioenergy supply source for Canada. Biomass and Bioenergy 32: 185∼197 https://doi.org/10.1016/j.biombioe.2007.09.010