• Title/Summary/Keyword: yeast strain

Search Result 904, Processing Time 0.029 seconds

Extracellular Proteinase를 생산하는 효모의 분리동정과 효소의 생산

  • Kim, Chnag-Hwa;Lee, Tae-Hyung;Yu, Choon-Bal;Jin, Ingnyol
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.452-458
    • /
    • 1996
  • A yeast strain TH65 producing a high level of proteinase under alkaline condition was isolated, and identified as Yarrowia lipolytica by morphological, physiological, and biochemical characteristics. In proteinase productivity, glycerol and glucose among tested carbon sources were very effective, and optimum concentration of glucose was 0.5%. Skim milk was found to be most effective nitrogen source in productivity, and its optimum concentration was 0.6%. But, cysteine, cystine and tryptophane decreased the proteinase productivity. Yeast extract was relatively effective at the range of 0.1-0.5%. The yeast showed maximum production of proteinase at 18$\circ$C, pH 9-11, and cultivation time of 36 hours.

  • PDF

Isolation and Identification of Cellulase-producing Microorganism, and Determination of Optimal Culture Condition (토양으로부터 Cellulose 분해효소를 생산하는 미생물의 분리, 동정 및 최적배양조건의 결정)

  • Hahm, Byoung-Kwon;Kim, Yoon-Keun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1028-1032
    • /
    • 1997
  • The strain No. 33, which produces cellulose-degrading enzyme, was isolated from soil. Yellow halo was identified when the culture supernatant of the strain was loaded onto agar plate containing 2.0% CMC using paper disc method. From scanning electron microscopic observation, the morphology of the stain was rod-shaped. For identification, several biochemical characteristics were tested, and this strain was identified to Bacillus sp. So, we named this strain as Bacillus sp. No. 33. The maximal growth was observed when the stain was cultured in the medium containing 1.0% glucose, 3.0% yeast extract, 0.5% $KH_2PO_4$, 0.02% $MgSO_4{\cdot}7H_2O$, pH 7.0 at $30^{\circ}C$ for 39 hours with shaking. The maximal enzyme production was accomplished using the medium containing 4.0% CMC, 2.0% yeast extract, 0.5% $KH_2PO_4$, 0.04% $MgSO_4{\cdot}7H_2O$, pH 7.0 at $30^{\circ}C$ for 42 hours with shaking.

  • PDF

Isolation of the Protease-producing Yeast Pichia anomala CO-1 and Characterization of Its Extracellular Neutral Protease (세포 외 중성 단백질분해효소를 생산하는 Pichia anomala CO-1의 분리 동정 및 효소 특성)

  • Kim, Ji Yeon
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1126-1135
    • /
    • 2019
  • From a sample of bamboo byproduct, the protease-producing yeast strain CO-1 was newly isolated. Strain CO-1 is spherical to ovoid in shape and measures $3.1-4.0{\times}3.8-4.4{\mu}m$. For the growth of strain CO-1, the optimal temperature and initial pH were $30^{\circ}C$ and 4.0, respectively. The strain was able to grow in 0.0-15.0%(w/v) NaCl and 0.0-9.0%(v/v) ethanol. Based on a phylogenetic analysis of its 18S rDNA sequences, strain CO-1 was identified as Pichia anomala. The extracellular protease produced by P. anomala CO-1 was partially purified by ammonium sulfate precipitation, which resulted in a 14.6-fold purification and a yield of 7.2%. The molecular mass of the protease was recorded as approximately 30 kDa via zymogram. The protease activity reached its maximum when 1.0%(w/v) CMC was used as the carbon source, 1.0%(w/v) yeast extract was used as the nitrogen source, and 0.3%(w/v) $MnSO_4$ was used as the mineral source. The protease revealed the highest activity at pH 7.0 and $30^{\circ}C$. This enzyme maintained more than 75% of its stability at a pH range of 4.0-10.0. After heating at $65^{\circ}C$ for 1 hr, the neutral protease registered at 60% of its original activity. The protease production coincided with growth and attained a maximal level during the post-exponential phase.

Yeast Selection for Quality Optimization of Distilled Spirits (증류주의 품질 최적화를 위한 효모선발 연구)

  • Choi, Sung-Inn;Kang, Soon Ah;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3887-3896
    • /
    • 2013
  • The aim of this study was to select yeast strain for quality optimization of distilled spirit which is prepared using rice. Five yeasts strains were compared for their brewing characteristics and showed normal fermentation pattern, but songcheon yeast(Y1) and distillery yeast(Y5) revealed higher fermentation ability than other samples tested. The analyzed results of fermented mashing showed that the distillery yeasts(Y4, Y5) had significantly much higher alcohol content, and songcheon yeast(Y1), distillery yeasts(Y4, Y5) had significantly higher ester content than other samples tested respectively, while the distillery yeasts(Y3, Y4, Y5) had significantly higher organic acid content than other samples tested. The analyzed results of distilled spirits which were distilled using copper distillery apparatus showed that the songcheon yeast(Y1) and distillery yeast(Y5) had a higher yield compared to other samples tested. In addition, the results of the aroma compounds such as ester and higher alcohol of distilled spirits among the five yeasts tested were similar to the analyzed results of fermented mashing. Siha aktivhefe 6 brennereihefe(Y5) indicated the highest overall preference including sensory evaluation and was selected as best yeast strain for quality optimization of distilled spirit which is prepared using rice.

Preparation of Flavor-enhancing Yeast Extract Using a Saccharomyces cerevisiae Strain with High RNA Content (고핵산 함유 Saccharomyces cerevisiae 균주를 이용한 정미성 효모 추출물의 제조)

  • Kim, Jae-Sik;Kim, Jin-Wook;Shim, Won;Kim, Jung-Wan;Park, Kwan-Hwa;Pek, Un-Hua
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.475-481
    • /
    • 1999
  • Yeast extracts were prepared using either autolysis or enzymatic digestion methods for industrial application of the Saccharomyces cerevisiae B24 strain developed previously to have high RNA content. Extraction ratio of yeast extract from yeast cell reached 65% when autolysis of yeast slurry having 10% solid content was induced at $50^{\circ}C$ and pH 5.0 by agitating with 100 rpm. However, neither 5'-IMP nor 5'-GMP was detected from the autolyzate. In another attempt to prepare a yeast extract S. cerevisiae B24 culture was treated at $90^{\circ}C$ and then treated by various enzymes including ${\beta}-1,3-glucanase$, phosphodiesterase (nuclease P1), adenylic deaminase, and a protease. The yeast extract prepared by the enzymatic digestion method contained 3.2g of 5'-IMP and 5'-GMP/100g dry yeast extract.

  • PDF

Effects of Yeast Strains and Fermentation Temperatures in Production of Hydrogen Sulfide During Beer Fermentation (맥주의 발효과정에서 효모와 발효온도가 황화수소의 발생에 미치는 영향)

  • Kim, Young-Ran;Moon, Seung-Tae;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.238-242
    • /
    • 2008
  • In this study, hydrogen sulfide ($H_2S$) production was examined during beer fermentation using two ale and two lager yeast strains. In the lager yeast fermentation, a large amount of $H_2S$ was produced in the early fermentation stages when the yeast were actively fermenting wort, indicating a positive relationship between the level of H2S production and the yeast growth rate during fermentation. The ale yeasts produced much lower levels of H2S than the lager yeasts. In the lager fermentation, a higher fermentation temperature shortened the fermentation period, but much higher levels of $H_2S$ were produced at higher temperatures. American pilsner lager yeast fermenting at $15^{\circ}C$ produced a relatively high level of $H_2S$ at the end of fermentation, which would require a longer aging time to remove this malodorous volatile sulfur compound. Not including the English ale strain, which produced a higher level of H2S at lower temperatures, the ale yeast produced lower levels of $H_2S$ at lower temperatures, suggesting that each strain has an optimum fermentation temperature for H2S production.

Increased Carotenoid Production in Xanthophyllomyces dendrorhous G276 Using Plant Extracts

  • Kim, Soo-Ki;Lee, Jun-Hyeong;Lee, Chi-Ho;Yoon, Yoh-Chang
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.128-132
    • /
    • 2007
  • The red yeast Xanthophyllomyces dendrorhous (previously named Phaffia rhodozyma) produces astaxanthin pigment among many carotenoids. The mutant X. dendrorhous G276 was isolated by chemical mutagenesis. The mutant produced about 2.0 mg of carotenoid per g of yeast cell dry weight and 8.0 mg/L of carotenoid after 5 days batch culture with YM media; in comparison, the parent strain produced 0.66 mg/g of yeast cell dry weight and a carotenoid concentration of 4.5 mg/L. We characterized the utilization of carbon sources by the mutant strain and screened various edible plant extracts to enhance the carotenoid production. The addition of Perilla frutescens (final concentration, 5%) or Allium fistulosum extracts (final concentration, 1%) enhanced the pigment production to about 32 mg/L. In a batch fermentor, addition of Perilla frutescens extract reduced the cultivation time by two days compared to control (no extract), which usually required five-day incubation to fully produce astaxanthin. The results suggest that plant extracts such as Perilla frutescens can effectively enhance astaxanthin production.

Screening of Thermotolerant Yeast for Use as Microbial Feed Additive

  • Lee, Jae-Heung;Lim, Yoo-Beom;Koh, Jong-ho;Baig, Soon-Yong;Shin, Hyung-Tai
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.162-165
    • /
    • 2002
  • With the objective of identifying the commercial potential of new direct-fed microbials, several temperature-tolerant strains were isolated from cane molasses at $39^{\circ}C$ and tested for their tolerance to pH, bile salts, and a mixture of volatile fatty acids (acetic acid:propionic acid:butyric acid=6.5:2.0:1.5). It was found that the isolated strain DY 252 grew very well up to pH 2.0 and was resistant to relatively high concentrations of bile salts. Among the strains tested, DY 252 was least inhibited by the addition of volatile fatty acids to the growth medium at $39^{\circ}C$. Accordingly, it would appear that strain DY 252, identified as yeast Issatchenkia orientalis, may be a potential candidate for use as a microbial feed additive.

Studies on Methanol-assimilating Yeasts (메탄올 자화효모에 관한 연구)

  • 전순배
    • Korean Journal of Microbiology
    • /
    • v.19 no.4
    • /
    • pp.163-173
    • /
    • 1981
  • The distribution of methanol-assimilating yeasts on three different sources (elm bark, soil and fresh-water mud) and the growth conditions of a new strain of Candidaboidinii (SIO) wereexamines. From 150 samples, 91 methanol yeasts were isolated through enrichment culture ; they were identified as 77 strains of Candida boidinii including four new strains, 5 isolates of Torulopsis pinus, 3 strains of Hansenula polymorpha and one sstrain of Pichia pastoris respectively. The comparison of these yeasts with three sources indicated that decaying bark of elm tree other two, and that Gandida boidinii was most frequently distributed in all three sources. Four new strains of Candida boidinii were freshly isolated and their taxonomical properties were discussed. Of them, SIO strain was selected and characterized for its growth on methanol. This yeast could grow well on less than 1%(v/v) methanol. However, its growth was inhibited at 10% methanol. The cell yield was 3.1g (dry weight) per 1000ml of mineral mediurr, containing 1%(v/v) methanol as well as 01.% yeast extract as additive. The concentration of 0.1% yeast extract appears to be effective for the biomass production. Optimum conditions for growth on methanol was found to be : $28^{\circ}C,\;NH_4^+$ as nitrogen sources, thiamine as vitamin, and pH 4.5 to 6.0. The cell composition was as follows : crude protein and nucleic acids were 54% and 7% respectively. The amino acids were also described.

  • PDF

Feasibility of Brewing Makgeolli Using Pichia anomala Y197-13, a Non-Saccharomyces cerevisiae

  • Kim, Hye Ryun;Kim, Jae-Ho;Bai, Dong-Hoon;Ahn, ByungHak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1749-1757
    • /
    • 2012
  • Makgeolli is a traditional rice wine favored by the general public in Korea. This study investigated the fermentation and sensory characteristics of using wild yeast strains for brewing makgeolli. A non-Saccharomyces cerevisiae strain was isolated from nuruk and termed Y197-13. It showed 98% similarity to Pichia anomala and had an optimal growth temperature of $25^{\circ}C$. Makgeolli was manufactured using koji, jinju nuruk, and improved nuruk as fermentation agents. Y197-13 makgeolli brewed with koji had alcohol and solids contents of 11.1% and 13.9%, respectively. Sweet sensory characteristics were attributed to residual sugars in makgeolli with 6% alcohol. The makgeolli had a fresh sour taste and carbonated taste. Volatile component analysis showed the isoamyl alcohol, phenylethyl alcohol, isoamyl acetate, and fatty acid, including ethyl oleate and ethyl linoleate, relative peak area was higher in Y197-13 makgeolli than in makgeolli with Saccharomyces cerevisiae. These results suggest the wild yeast, Y197-13, as a candidate for brewing makgeolli.