Effects of Yeast Strains and Fermentation Temperatures in Production of Hydrogen Sulfide During Beer Fermentation

맥주의 발효과정에서 효모와 발효온도가 황화수소의 발생에 미치는 영향

  • Kim, Young-Ran (Department of Food Science and Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University) ;
  • Moon, Seung-Tae (Department of Food Science and Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University) ;
  • Park, Seung-Kook (Department of Food Science and Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
  • 김영란 (경희대학교 식품생명공학과, 생명자원과학연구원) ;
  • 문승태 (경희대학교 식품생명공학과, 생명자원과학연구원) ;
  • 박승국 (경희대학교 식품생명공학과, 생명자원과학연구원)
  • Published : 2008.04.30

Abstract

In this study, hydrogen sulfide ($H_2S$) production was examined during beer fermentation using two ale and two lager yeast strains. In the lager yeast fermentation, a large amount of $H_2S$ was produced in the early fermentation stages when the yeast were actively fermenting wort, indicating a positive relationship between the level of H2S production and the yeast growth rate during fermentation. The ale yeasts produced much lower levels of H2S than the lager yeasts. In the lager fermentation, a higher fermentation temperature shortened the fermentation period, but much higher levels of $H_2S$ were produced at higher temperatures. American pilsner lager yeast fermenting at $15^{\circ}C$ produced a relatively high level of $H_2S$ at the end of fermentation, which would require a longer aging time to remove this malodorous volatile sulfur compound. Not including the English ale strain, which produced a higher level of H2S at lower temperatures, the ale yeast produced lower levels of $H_2S$ at lower temperatures, suggesting that each strain has an optimum fermentation temperature for H2S production.

Ale과 lager 효모를 이용하여 맥주발효 실험한 결과, lager 효모는 발효가 활발하게 일어나는 발효 초기에 많은 양의 황화수소를 발생하였으며 ale 효모보다 더욱 많은 양의 황화수소가 발생되었다. 효모의 증식이 활발한 발효 초기에 많은 양의 황화수소가 만들어지는 것을 보아 효모의 증식과 황화수소의 생성 사이에는 상관관계가 있음을 확인하였다. 온도 차이에 따른 실험 결과에서, lager 효모의 경우에는 발효 온도가 높은 것이 발효율이 더 높아 발효 시간을 줄일 수 있는 장점은 있으나, 많은 양의 황화수소가 발생되는 것을 알 수 있었다. 또한 APL은 $15^{\circ}C$에서 발효시켰을 때, 발효 끝 부분에서 많은 양의 황화수소가 발생되었는데, 이것은 맥주에 좋지 않은 냄새의 원인이 되므로 장시간의 숙성기간을 필요로 한다는 것을 의미한다. EA의 경우에는 낮은 온도에서 오히려 더 많은 양의 황화수소가 생성이 되었으나, HA의 경우에는 lager 효모에서와 같이 높은 온도에서 더 많은 양의 황화수소가 생성되었는데, 이는 각 효모마다 $H_2S$를 생성하기에 적합한 온도가 있음을 의미한다.

Keywords

References

  1. Walker MD. Formation and Fate of Sulphur Volatiles in Brewing. EBC Proceedings of the 23rd Congress, Lisbon. Portugal. pp. 521-528 (1991)
  2. Carey D, Grossman K. Fermentation and cellar operations. pp. 23-40. In: Fermentation, Cellaring, and Packaging Operations. Ockert K (ed), Master Brew. Assoc. Am., St. Paul, MN, USA (2006)
  3. Sakuma S, Rikimura Y, Kobayashi K, Kowaka M. Sunstruck flavor formation in beer. J. Am. Soc. Brew. Chem. 49: 162-165 (2001)
  4. Doyle A, Slaughter JC. Methionine and sulphate as competing and complementary sources of sulphur for yeast during fermentation. J. Inst. Brew. 104: 147-155 (1998) https://doi.org/10.1002/j.2050-0416.1998.tb00989.x
  5. Takahashi T, Nagami K, Nakatani K, Kumada J. Hydrogen sulfide in brewing 2. Tech Q. Master Brew. Assoc. Am. 17: 210-214 (1980)
  6. Lermusieau G, Collin S. Volatile sulfur compounds in hops and residual concentrations in beer-a review. J. Am. Soc. Brew. Chem. 61: 109-113 (2003) https://doi.org/10.1094/ASBCJ-61-0109
  7. Tokuyama T, Kuraishi H, Aida K, Uemura T. Hydrogen sulfide evolution due to pantothenic acid deficiency in the yeast requiring this vitamin, with special reference to the effect of adenosine triphosphate on yeast cysteine desulfhydrase. J. Gen. Appl. Microbiol. 19: 439-466 (1973) https://doi.org/10.2323/jgam.19.439
  8. Jordan B, Slaughter JC. Sulphate availability and cysteine desulphydration activity as influences on production of hydrogen sulfide by Sacchromyces cerevisiae during growth in a defined glucose-salts medium. Trans. Br. Mycol. Soc. 87: 525-531 (1986) https://doi.org/10.1016/S0007-1536(86)80093-6
  9. Nagami K, Takahashi T, Nakatani K, Kumada J. Hydrogen sulfide in brewing. Tech Q. Master Brew. Assoc. Am. 17: 64-69 (1980)
  10. Park SK, Kim JY. New development for measuring hydrogen sulfide in brewing-preliminary data. tech. Q. Master Brew. Assoc. Am. 41: 310-316 (2004)
  11. Gruber MN. Briess Homebrewing Companion. Briess industries, Inc. Chilton, WI, USA. pp. 18-19 (1997)
  12. White C. White labs pure brewers yeast. White labs. San Diego, CA, USA (2000)
  13. Walker MD, Simpson WJ. Production of volatile sulphur compounds by ale and lager brewing strains of Saccharomyces cerevisiae, Lett. Appl. Microbiol. 16: 40-43 (1993) https://doi.org/10.1111/j.1472-765X.1993.tb01368.x
  14. Noonan GJ. New brewing lager beer. Brewers Publications Boulder, CO. USA. pp. 172-173 (1996)
  15. Boswell CD, Nienow AW, Hewitt CJ. Studies on the effect of mechanical agitation on the performance of brewing fermentations: Fermentation rate, yeast physiology, and development of flavor compound. J. Am. Soc. Brew. Chem. 60: 101-106 (2002) https://doi.org/10.1094/ASBCJ-60-0101
  16. Bamforth C. Scientific principles of malting and brewing. Am. Soc. Brew. Chem, St. Paul, MN, USA. pp. 113-114 (2006)