• Title/Summary/Keyword: yap

Search Result 116, Processing Time 0.027 seconds

PSME4 determines mesenchymal stem cell fate towards cardiac commitment through YAP1 degradation

  • Mira Kim;Yong Sook Kim;Youngkeun Ahn;Gwang Hyeon Eom;Somy Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.

Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer

  • Kim, Youngeun;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.281-282
    • /
    • 2017
  • Advances in the understanding of the Hippo signaling as a key regulatory pathway of proliferation and apoptosis have provided mechanical insights for controlling organ size and tumorigenicity. Recently, much attention has been directed to the regulation of LATS1/2 (large tumor suppressor) kinases that phosphorylate YAP/TAZ, a transcriptional co-activator in the Hippo pathway, and control the level and nuclear localization of YAP/TAZ. In our recent work, we showed that deubiquitinase YOD1 stabilizes ITCH, and facilitates ITCH-mediated LATS1/2 ubiquitination and degradation, resulting in increased YAP/TAZ level. Furthermore, we found that the YOD1-ITCH-LATS1/2-YAP/TAZ signaling axis is controlled by the differential expression of miR-21 in a cell-density-dependent manner. Using a transgenic mouse model, we showed that the inducible expression of YOD1 enhances the proliferation of hepatocytes and leads to hepatomegaly in a YAP/TAZ-activity-dependent manner. Moreover, a strong correlation was observed between YOD1 and YAP expression in liver cancer patients. Overall, our data suggest that YOD1 is a novel regulator of the Hippo pathway, and thereby a potential therapeutic target for liver cancer.

Endoproteolytic Processing of Human Parathyroid Hormone in Saccharomyces cerevisiae Mutants Lacking Genes Encoding the Yap3, Mkc7, and Kex2 Endoproteases

  • Choi, Won-A.;Kang, Hyun-Ah;Chung, Bong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.679-682
    • /
    • 1999
  • When the human parathyroid hormone (hPTH) is expressed as a secretory product in S. cerevisiae, most of the secreted hPTH is internally cleaved by endoproteolytic processing. To investigate whether the yeast endoproteases such as Kex2p, Yap3p, and Mkc7p are involved in the endoproteolytic processing of hPTH in S. cerevisiae, hPTH was expressed in S. cerevisiae mutants deficient in one or two of the following well-known endoproteases such as Kex2p, Mkc7p, and Yap3p. Among these mutants, the yap3-disrupted(yap3$\Delta$) and yap3/mkc7-disrupted (yap3Δmkc7$\Delta$) yeasts showed a significant reduction in the extent of hPTH proteolysis. In contrast, the mkc7-disrupted (mkc7$\Delta$) yeast did not reduce the proteolysis of hPTH as compared to the wild type. This suggests that Mkc7p is not involved in the endoproteolytic processing of hPTH. It was also found that the kex2-disrupted (kex2$\Delta$) mutant was not able to secrete a detectable amount of hPTH.

  • PDF

Application of Nd-YAP laser to the conventional treatment of periodontal and endodontic combined lesions (Nd-YAP laser를 적용한 치주-근관 복합병소의 치료에 대한 고찰)

  • Kang, He-Kyong;Yoon, Ho-Jung
    • The Journal of the Korean dental association
    • /
    • v.47 no.8
    • /
    • pp.479-486
    • /
    • 2009
  • Purpose: The aim of this study was to show the clinical results of combination of Nd-YAP (1340nm) laser therapy with conventional endodontic and periodontal treatment. Materials and Methods: Four patients with chronic advanced periodontitis and endodontic infection were treated with conventional treatment and Nd-YAP laser therapy. Occlusal adjustment and splinting were done for stabilization of the teeth with severe horizontal and vertical mobility. The protocol for periodontal treatment was followed as scaling and root planing, pocket irrigation with 3% $H_2O_2$ and exposure of Nd-YAP laser using 320${\mu}m$ optical fiber with 160mJ/pluse, 30Hz. The other protocol for endodontic treatment was followed as access opening, canal preparation by hand and rotary instrument, canal filling, and exposure of Nd-YAP laser using 200${\mu}m$ optical fiber with 200mJ/pluse, 10Hz and 180mJ/pluse, 5Hz which were used respectively for disinfection and canal filling. The assessments of probing depth, mobility, and radiography were made prior to and after treatment. Result: All of these four clinical cases showed good healing of periodontium, which presented decrease of mobility and pocket depth, and increase of bone regeneration and bone density on the radiography. Conclusion: The bactericidal effect of Nd-YAP laser would provide benefits for improving clinical results that are obtained from conventional therapy.

  • PDF

The Short-Chain Fatty Acid Receptor GPR43 Modulates YAP/TAZ via RhoA

  • Park, Bi-Oh;Kim, Seong Heon;Kim, Jong Hwan;Kim, Seon-Young;Park, Byoung Chul;Han, Sang-Bae;Park, Sung Goo;Kim, Jeong-Hoon;Kim, Sunhong
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.458-467
    • /
    • 2021
  • GPR43 (also known as FFAR2 or FFA2) is a G-protein-coupled receptor primarily expressed in immune cells, enteroendocrine cells and adipocytes that recognizes short-chain fatty acids, such as acetate, propionate, and butyrate, likely to be implicated in innate immunity and host energy homeostasis. Activated GPR43 suppresses the cAMP level and induces Ca2+ flux via coupling to Gαi and Gαq families, respectively. Additionally, GPR43 is reported to facilitate phosphorylation of ERK through G-protein-dependent pathways and interacts with β-arrestin 2 to inhibit NF-κB signaling. However, other G-protein-dependent and independent signaling pathways involving GPR43 remain to be established. Here, we have demonstrated that GPR43 augments Rho GTPase signaling. Acetate and a synthetic agonist effectively activated RhoA and stabilized YAP/TAZ transcriptional coactivators through interactions of GPR43 with Gαq/11 and Gα12/13. Acetate-induced nuclear accumulation of YAP was blocked by a GPR43-specific inverse agonist. The target genes induced by YAP/TAZ were further regulated by GPR43. Moreover, in THP-1-derived M1-like macrophage cells, the Rho-YAP/TAZ pathway was activated by acetate and a synthetic agonist. Our collective findings suggest that GPR43 acts as a mediator of the Rho-YAP/TAZ pathway.

Insulin receptor substrate 2: a bridge between Hippo and AKT pathways

  • Jeong, Sun-Hye;Lim, Dae-Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.209-210
    • /
    • 2018
  • NAFLD induces the development of advanced liver diseases such as NASH and liver cancer. Therefore, understanding the mechanism of NAFLD development is critical for its prevention and treatment. Ablation of PTEN or Hippo pathway components induces liver cancer in a murine model by hyperactive AKT or YAP/TAZ, respectively. Although the regulation of these two pathways occurs in the same hepatocyte, the details of crosstalk between Hippo-YAP/TAZ and PTEN-AKT pathways in liver homeostasis and tumorigenesis still remain unclear. Here, we found that depletion of both PTEN and SAV1 in liver promotes spontaneous NAFLD and liver cancer through hyperactive AKT via YAP/TAZ-mediated up-regulation of IRS2 transcription. Conversely, NAFLD is rescued by both ablation of YAP/TAZ and activation of the Hippo pathway. Furthermore, human HCC patients with NAFLD showed strong correlation between YAP/TAZ and IRS2 or phospho-AKT expression. Finally, the inhibition of AKT by MK-2206 treatment attenuates NAFLD development and tumorigenesis. Our findings indicate that Hippo pathway interacts with AKT signaling during the intervention with IRS2 to prevent NAFLD and liver cancer.

Photobiomodulation therapy activates YAP and triggers proliferation and dedifferentiation of Müller glia in mammalian retina

  • Seo-Yeon Kim;Myung-Jun Song;In-Beom Kim;Tae Kwan Park;Jungmook Lyu
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.502-507
    • /
    • 2023
  • Photobiomodulation therapy has been proposed as a promising therapeutic approach for retinal degenerative diseases. However, its effect on the regenerative capacity in mammalian retina and its intracellular signalling mechanisms remain unknown. Here, we show that photobiomodulation with 670 nm light stimulates Müller glia cell cycle re-entry and dedifferentiation into a progenitor-like state in both the uninjured and injured retina. We also find that 670 nm light treatment inhibits the Hippo pathway, which is activated in Müller glia following NaIO3-induced retinal injury. YAP, a major downstream effector of the Hippo signalling pathway was translocated into the nucleus of Müller glia along with YAP dephosphorylation in retina treated with 670 nm light. Deficiency of YAP attenuated Müller glia cell cycle re-entry and dedifferentiation. Our data reveal that the Hippo-YAP signalling pathway is associated with the photostimulatory effect on regenerative response in mammalian retina, and suggest a potential therapeutic strategy for retinal degenerative diseases.

WWC1 and NF2 Prevent the Development of Intrahepatic Cholangiocarcinoma by Regulating YAP/TAZ Activity through LATS in Mice

  • Park, Jaeoh;Kim, Jeong Sik;Nahm, Ji Hae;Kim, Sang-Kyum;Lee, Da-Hye;Lim, Dae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.491-499
    • /
    • 2020
  • Hippo signaling acts as a tumor suppressor pathway by inhibiting the proliferation of adult stem cells and progenitor cells in various organs. Liver-specific deletion of Hippo pathway components in mice induces liver cancer development through activation of the transcriptional coactivators, YAP and TAZ, which exhibit nuclear enrichment and are activated in numerous types of cancer. The upstream-most regulators of Warts, the Drosophila ortholog of mammalian LATS1/2, are Kibra, Expanded, and Merlin. However, the roles of the corresponding mammalian orthologs, WWC1, FRMD6 and NF2, in the regulation of LATS1/2 activity and liver tumorigenesis in vivo are not fully understood. Here, we show that deletion of both Wwc1 and Nf2 in the liver accelerates intrahepatic cholangiocarcinoma (iCCA) development through activation of YAP/TAZ. Additionally, biliary epithelial cell-specific deletion of both Lats1 and Lats2 using a Sox9-CreERT2 system resulted in iCCA development through hyperactivation of YAP/TAZ. These findings suggest that WWC1 and NF2 cooperate to promote suppression of cholangiocarcinoma development by inhibiting the oncogenic activity of YAP/TAZ via LATS1/2.

Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • Kho, Chang-Won;Lee, Phil-Young;Bae, Kwang-Hee;Kang, Sung-Hyun;Cho, Sa-Yeon;Lee, Do-Hee;Sun, Choong-Hyun;Yi, Gwan-Su;Park, Byoung-Chul;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.270-282
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation

  • Kim, Wantae;Khan, Sanjoy Kumar;Yang, Yingzi
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.1-2
    • /
    • 2017
  • Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocytes. By rigorous genetic approaches, we identified an interacting network of the Hippo, Wnt/${\beta}$-catenin and Notch signaling pathways that control organ size and HCC development. We found that in hepatocytes, the loss of Mst1/2 leads to the activation of Notch signaling, which forms a positive feedback loop with Yap/Taz (transcription factors controlled by Mst1/2). This positive feedback loop results in severe liver enlargement and rapid HCC formation. Blocking the Yap/Taz-Notch positive feedback loop by Notch inhibition in vivo significantly reduced the Yap/Taz activities, hepatocyte proliferation and tumor formation. Furthermore, we uncovered a surprising inhibitory role of Wnt/${\beta}$-catenin signaling to Yap/Taz activities, which are important in tumor initiation. Genetic removal of ${\beta}$-catenin in the liver of the Mst1/2 mutants significantly accelerates tumoriogenesis. Therefore, Wnt/${\beta}$-catenin signaling, known for its oncogenic property, exerts an unexpected function in restricting Yap/Taz and Notch activities in HCC initiation. The molecular interplay between the three signaling pathways identified in our study provides new insights in developing novel therapeutic strategies to treat liver tumors.