References
- Baumgartner, R., Poernbacher, I., Buser, N., Hafen, E., and Stocker, H. (2010). The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev. Cell 18, 309-316. https://doi.org/10.1016/j.devcel.2009.12.013
- Benhamouche, C.M., Saotome, I., Gladden, A.B., Liu, C.H., Giovannini, M., and McClatchey, A.I. (2010). Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 24, 1718-1730. https://doi.org/10.1101/gad.1938710
- Camargo, F.D., Gokhale, S., Johnnidis, J.B., Fu, D., Bell, G.W., Jaenisch, R., and Brummelkamp, T.R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol. 17, 2054-2060. https://doi.org/10.1016/j.cub.2007.10.039
- Choi, W., Kim, J., Park, J., Lee, D.H., Hwang, D., Kim, J.H., Ashktorab, H., Smoot, D., Kim, S.Y., Choi, C., et al. (2018). YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC. Cancer Res. 78, 3306-3320. https://doi.org/10.1158/0008-5472.CAN-17-3487
- Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A.R., Poletti, A., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772. https://doi.org/10.1016/j.cell.2011.09.048
- Genevet, A., Wehr, M.C., Brain, R., Thompson, B.J., and Tapon, N. (2010). Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev. Cell 18, 300-308. https://doi.org/10.1016/j.devcel.2009.12.011
- Giovannini, M., Robanus-Maandag, E., van der Valk, M., Niwa-Kawakita, M., Abramowski, V., Goutebroze, L., Woodruff, J.M., Berns, A., and Thomas, G. (2000). Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev. 14, 1617-1630.
- Gregorieff, A., Liu, Y., Inanlou, M.R., Khomchuk, Y., and Wrana, J.L. (2015). Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer. Nature 526, 715-718. https://doi.org/10.1038/nature15382
- Halder, G. and Johnson, R.L. (2011). Hippo signaling: growth control and beyond. Development 138, 9-22. https://doi.org/10.1242/dev.045500
- Hayashi, A., Misumi, K., Shibahara, J., Arita, J., Sakamoto, Y., Hasegawa, K., Kokudo, N., and Fukayama, M. (2016). Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am. J. Surg. Pathol. 40, 1021-1030. https://doi.org/10.1097/PAS.0000000000000670
- Hayashi, S., Yokoyama, H., and Tamura, K. (2015). Roles of Hippo signaling pathway in size control of organ regeneration. Dev. Growth Differ. 57, 341-351. https://doi.org/10.1111/dgd.12212
- Heallen, T., Morikawa, Y., Leach, J., Tao, G., Willerson, J.T., Johnson, R.L., and Martin, J.F. (2013). Hippo signaling impedes adult heart regeneration. Development 140, 4683-4690. https://doi.org/10.1242/dev.102798
- Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R.L., and Martin, J.F. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458-461. https://doi.org/10.1126/science.1199010
- Hermann, A., Wennmann, D.O., Gromnitza, S., Edeling, M., Van Marck, V., Sudol, M., Schaefer, L., Duning, K., Weide, T., Pavenstadt, H., et al. (2018). WW and C2 domain-containing proteins regulate hepatic cell differentiation and tumorigenesis through the hippo signaling pathway. Hepatology 67, 1546-1559. https://doi.org/10.1002/hep.29647
- Kim, M., Kim, M., Lee, S., Kuninaka, S., Saya, H., Lee, H., Lee, S., and Lim, D.S. (2013). cAMP/PKA signalling reinforces the LATS-YAP pathway to fully suppress YAP in response to actin cytoskeletal changes. EMBO J. 32, 1543-1555. https://doi.org/10.1038/emboj.2013.102
- Kopp, J.L., Dubois, C.L., Schaffer, A.E., Hao, E., Shih, H.P., Seymour, P.A., Ma, J., and Sander, M. (2011). Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653-665. https://doi.org/10.1242/dev.056499
- Lee, D.H., Park, J.O., Kim, T.S., Kim, S.K., Kim, T.H., Kim, M.C., Park, G.S., Kim, J.H., Kuninaka, S., Olson, E.N., et al. (2016). LATS-YAP/TAZ controls lineage specification by regulating TGFbeta signaling and Hnf4alpha expression during liver development. Nat. Commun. 7, 11961. https://doi.org/10.1038/ncomms11961
- Lee, K.P., Lee, J.H., Kim, T.S., Kim, T.H., Park, H.D., Byun, J.S., Kim, M.C., Jeong, W.I., Calvisi, D.F., Kim, J.M., et al. (2010). The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl. Acad. Sci. U. S. A. 107, 8248-8253. https://doi.org/10.1073/pnas.0912203107
- Lu, L., Finegold, M.J., and Johnson, R.L. (2018). Hippo pathway coactivators Yap and Taz are required to coordinate mammalian liver regeneration. Exp. Mol. Med. 50, e423. https://doi.org/10.1038/emm.2017.205
- Makuch, L., Volk, L., Anggono, V., Johnson, R.C., Yu, Y., Duning, K., Kremerskothen, J., Xia, J., Takamiya, K., and Huganir, R.L. (2011). Regulation of AMPA receptor function by the human memory-associated gene KIBRA. Neuron 71, 1022-1029. https://doi.org/10.1016/j.neuron.2011.08.017
- Marti, P., Stein, C., Blumer, T., Abraham, Y., Dill, M.T., Pikiolek, M., Orsini, V., Jurisic, G., Megel, P., Makowska, Z., et al. (2015). YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62, 1497-1510. https://doi.org/10.1002/hep.27992
- Moon, K.H., Kim, H.T., Lee, D., Rao, M.B., Levine, E.M., Lim, D.S., and Kim, J.W. (2018). Differential expression of NF2 in neuroepithelial compartments is necessary for mammalian eye development. Dev. Cell 44, 13-28.e3. https://doi.org/10.1016/j.devcel.2017.11.011
- Nishio, M., Sugimachi, K., Goto, H., Wang, J., Morikawa, T., Miyachi, Y., Takano, Y., Hikasa, H., Itoh, T., Suzuki, S.O., et al. (2016). Dysregulated YAP1/TAZ and TGF-beta signaling mediate hepatocarcinogenesis in Mob1a/1bdeficient mice. Proc. Natl. Acad. Sci. U. S. A. 113, E71-E80. https://doi.org/10.1073/pnas.1517188113
- Pan, D. (2007). Hippo signaling in organ size control. Genes Dev. 21, 886-897. https://doi.org/10.1101/gad.1536007
- Park, G.S., Oh, H., Kim, M., Kim, T., Johnson, R.L., Irvine, K.D., and Lim, D.S. (2016). An evolutionarily conserved negative feedback mechanism in the Hippo pathway reflects functional difference between LATS1 and LATS2. Oncotarget 7, 24063-24075. https://doi.org/10.18632/oncotarget.8211
- Pei, T., Li, Y., Wang, J., Wang, H., Liang, Y., Shi, H., Sun, B., Yin, D., Sun, J., Song, R., et al. (2015). YAP is a critical oncogene in human cholangiocarcinoma. Oncotarget 6, 17206-17220. https://doi.org/10.18632/oncotarget.4043
- Rhee, H., Ko, J.E., Chung, T., Jee, B.A., Kwon, S.M., Nahm, J.H., Seok, J.Y., Yoo, J.E., Choi, J.S., Thorgeirsson, S.S., et al. (2018). Transcriptomic and histopathological analysis of cholangiolocellular differentiation trait in intrahepatic cholangiocarcinoma. Liver Int. 38, 113-124. https://doi.org/10.1111/liv.13492
- Rizvi, S., Fischbach, S.R., Bronk, S.F., Hirsova, P., Krishnan, A., Dhanasekaran, R., Smadbeck, J.B., Smoot, R.L., Vasmatzis, G., and Gores, G.J. (2018). YAPassociated chromosomal instability and cholangiocarcinoma in mice. Oncotarget 9, 5892-5905. https://doi.org/10.18632/oncotarget.23638
- Song, H., Mak, K.K., Topol, L., Yun, K., Hu, J., Garrett, L., Chen, Y., Park, O., Chang, J., Simpson, R.M., et al. (2010). Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl. Acad. Sci. U. S. A. 107, 1431-1436. https://doi.org/10.1073/pnas.0911409107
- Su, T., Ludwig, M.Z., Xu, J., and Fehon, R.G. (2017). Kibra and Merlin activate the Hippo pathway spatially distinct from and independent of Expanded. Dev. Cell 40, 478-490.e3. https://doi.org/10.1016/j.devcel.2017.02.004
- Van Haele, M., Moya, I.M., Karaman, R., Rens, G., Snoeck, J., Govaere, O., Nevens, F., Verslype, C., Topal, B., Monbaliu, D., et al. (2019). YAP and TAZ heterogeneity in primary liver cancer: an analysis of its prognostic and diagnostic role. Int. J. Mol. Sci. 20, 638. https://doi.org/10.3390/ijms20030638
- Wang, T., Qin, Z.Y., Wen, L.Z., Guo, Y., Liu, Q., Lei, Z.J., Pan, W., Liu, K.J., Wang, X.W., Lai, S.J., et al. (2018). Epigenetic restriction of Hippo signaling by MORC2 underlies stemness of hepatocellular carcinoma cells. Cell Death Differ. 25, 2086-2100. https://doi.org/10.1038/s41418-018-0095-6
- Yu, F.X., Zhao, B., and Guan, K.L. (2015). Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811-828. https://doi.org/10.1016/j.cell.2015.10.044
- Zhang, N., Bai, H., David, K.K., Dong, J., Zheng, Y., Cai, J., Giovannini, M., Liu, P., Anders, R.A., and Pan, D. (2010). The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell 19, 27-38. https://doi.org/10.1016/j.devcel.2010.06.015
- Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y., Thasler, W., Lee, J.T., Avruch, J., et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425-438. https://doi.org/10.1016/j.ccr.2009.09.026
Cited by
- MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer vol.9, pp.4, 2020, https://doi.org/10.3390/biomedicines9040347
- ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway vol.47, pp.5, 2020, https://doi.org/10.1080/01902148.2021.1916651