Gpx3-dependent Responses Against Oxidative Stress in Saccharomyces cerevisiae

  • 발행 : 2008.02.29

초록

The yeast Saccharomyces cerevisiae has defense mechanisms identical to higher eukaryotes. It offers the potential for genome-wide experimental approaches owing to its smaller genome size and the availability of the complete sequence. It therefore represents an ideal eukaryotic model for studying cellular redox control and oxidative stress responses. S. cerevisiae Yap1 is a well-known transcription factor that is required for $H_2O_2$-dependent stress responses. Yap1 is involved in various signaling pathways in an oxidative stress response. The Gpx3 (Orp1/PHGpx3) protein is one of the factors related to these signaling pathways. It plays the role of a transducer that transfers the hydroperoxide signal to Yap1. In this study, using extensive proteomic and bioinformatics analyses, the function of the Gpx3 protein in an adaptive response against oxidative stress was investigated in wild-type, gpx3-deletion mutant, and gpx3-deletion mutant overexpressing Gpx3 protein strains. We identified 30 proteins that are related to the Gpx3-dependent oxidative stress responses and 17 proteins that are changed in a Gpx3-dependent manner regardless of oxidative stress. As expected, $H_2O_2$-responsive Gpx3-dependent proteins include a number of antioxidants related with cell rescue and defense. In addition, they contain a variety of proteins related to energy and carbohydrate metabolism, transcription, and protein fate. Based upon the experimental results, it is suggested that Gpx3-dependent stress adaptive response includes the regulation of genes related to the capacity to detoxify oxidants and repair oxidative stress-induced damages affected by Yap1 as well as metabolism and protein fate independent from Yap1.

키워드

참고문헌

  1. Basu, U., J. L. Southron, J. L. Stephens, and G. J. Taylor. 2004. Reverse genetic analysis of the glutathione metabolic pathway suggests a novel role of PHGPX and URE2 genes in aluminum resistance in Saccharomyces cerevisiae. Mol. Genet. Genom. 271: 627-637 https://doi.org/10.1007/s00438-004-1015-7
  2. Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucl. Acids Res. 21: 3329-3330 https://doi.org/10.1093/nar/21.14.3329
  3. Brombacher, K., B. B. Fischer, K. Rufenacht, and R. I. Eggen. 2006. The role of Yap1p and Skn7p-mediated oxidative stress response in the defense of Saccharomyces cerevisiae against singlet oxygen. Yeast 23: 741-750 https://doi.org/10.1002/yea.1392
  4. Caesar, R., J. Warringer, and A. Blomberg. 2006. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. Euk. Cell 5: 368-378 https://doi.org/10.1128/EC.5.2.368-378.2006
  5. Carmel-Harel, O., R. Stearman, A. P. Gasch, D. Botstein, P. O. Brown, and G. Storz. 2001. Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol. Microbiol. 39: 595-605 https://doi.org/10.1046/j.1365-2958.2001.02255.x
  6. Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
  7. Delaunay, A., D. Pflieger, M. B. Barrault, J. Vinh, and M. B. Toledano. 2002. A thiol peroxidase is an $H_{2}O_{2}$ receptor and redox-transducer in gene activation. Cell 111: 471-481 https://doi.org/10.1016/S0092-8674(02)01048-6
  8. Demasi, A. P., G. A. Pereira, and L. E. Netto. 2006. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J. 273: 805-816 https://doi.org/10.1111/j.1742-4658.2006.05116.x
  9. Dormer, U. H., J. Westwater, D. W. Stephen, and D. J. Jamieson. 2002. Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene. Biochim. Biophys. Acta 1576: 23-29 https://doi.org/10.1016/S0167-4781(02)00248-8
  10. Estruch, F. 2000. Stress-controlled transcription factors, stressinduced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev. 24: 469-486 https://doi.org/10.1111/j.1574-6976.2000.tb00551.x
  11. Fedoroff, N. 2006. Redox regulatory mechanisms in cellular stress responses. Ann. Bot. 98: 289-300 https://doi.org/10.1093/aob/mcl128
  12. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  13. Godon, C., G. Lagniel, J. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B. Toledano, and J. Labarre. 1998. The $H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480-22489 https://doi.org/10.1074/jbc.273.35.22480
  14. Grant, C. M., F. H. Maciver, and I. W. Dawes. 1996. Stationaryphase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 22: 739-746 https://doi.org/10.1046/j.1365-2958.1996.d01-1727.x
  15. Hahn, J. S., D. W. Neef, and D. J. Thiele. 2006. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Mol. Microbiol. 60: 240-251 https://doi.org/10.1111/j.1365-2958.2006.05097.x
  16. Harbison, C. T., D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac, T. W. Danford, N. M. Hannett, J. B. Tagne, D. B. Reynolds, et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104 https://doi.org/10.1038/nature02800
  17. Hasan, R., C. Leroy, A. D. Isnard, J. Labarre, E. Boy-Marcotte, and M. B. Toledano. 2002. The control of the yeast $H_{2}O_{2}$ response by the Msn2/4 transcription factors. Mol. Microbiol. 45: 233-241 https://doi.org/10.1046/j.1365-2958.2002.03011.x
  18. Inoue, Y., T. Matsuda, K. Sugiyama, S. Izawa, and A. Kimura. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J. Biol. Chem. 274: 27002-27009 https://doi.org/10.1074/jbc.274.38.27002
  19. Kho, C. W., P. Y. Lee, K. H. Bae, S. Y. Cho, Z. W. Lee, B. C. Park, S. M. Kang, D. H. Lee, and S. G. Park. 2006. Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochem. Biophys. Res. Commun. 348: 25-35 https://doi.org/10.1016/j.bbrc.2006.06.067
  20. Kuge, S. and N. Jones. 1994. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 13: 655-664
  21. MacIsaac, K. D., T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and E. Fraenkel. 2006. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics 7: 113 https://doi.org/10.1186/1471-2105-7-113
  22. Martindale, J. L. and N. J. Holbrook. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell Physiol. 192: 1-15 https://doi.org/10.1002/jcp.10119
  23. Menant, A., P. Baudouin-Cornu, C. Peyraud, M. Tyers, and D. Thomas. 2006. Determinants of the ubiquitin-mediated degradation of the Met4 transcription factor. J. Biol. Chem. 281: 11744-11754 https://doi.org/10.1074/jbc.M600037200
  24. Myung, J. K. and G. Lubec. 2006. Use of solution-IEFfractionation leads to separation of 2673 mouse brain proteins including 255 hydrophobic structures. J. Proteome Res. 5: 1267-1275 https://doi.org/10.1021/pr060015h
  25. Nguyen, D. T., A. M. Alarco, and M. Raymond. 2001. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J. Biol. Chem. 276: 1138-1145 https://doi.org/10.1074/jbc.M008377200
  26. Park, S. G., C. W. Kho, S. Y. Cho, D. H. Lee, S. H. Kim, and B. C. Park. 2002. A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2: 206-211 https://doi.org/10.1002/1615-9861(200202)2:2<206::AID-PROT206>3.0.CO;2-5
  27. Pedrajas, J. R., P. Porras, E. Martinez-Galisteo, C. A. Padilla, A. Miranda-Vizuete, and J. A. Barcena. 2002. Two isoforms of Saccharomyces cerevisiae glutaredoxin 2 are expressed in vivo and localize to different subcellular compartments. Biochem. J. 364: 617-623 https://doi.org/10.1042/BJ20020570
  28. Reverter-Branchat, G., E. Cabiscol, J. Tamarit, and J. Ros. 2004. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: Common targets and prevention by calorie restriction. J. Biol. Chem. 279: 31983-31989 https://doi.org/10.1074/jbc.M404849200
  29. Ross, S. J., V. J. Findlay, P. Malakasi, and B. A. Morgan. 2000. Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11: 2631-2642 https://doi.org/10.1091/mbc.11.8.2631
  30. Sies, H. and E. Cadenas. 1985. Oxidative stress: Damage to intact cells and organs. Philos. Trans R. Soc. Lond. B Biol. Sci. 311: 617-631 https://doi.org/10.1098/rstb.1985.0168
  31. Stephen, D. W., S. L. Rivers, and D. J. Jamieson. 1995. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol. Microbiol. 16: 415-423 https://doi.org/10.1111/j.1365-2958.1995.tb02407.x
  32. Stone, J. R. and S. Yang. 2006. Hydrogen peroxide: A signaling messenger. Antioxid. Redox Signal. 8: 243-270 https://doi.org/10.1089/ars.2006.8.243
  33. Strain, J., C. R. Lorenz, J. Bode, S. Garland, G. A. Smolen, D. T. Ta, L. E. Vickery, and V. C. Culotta. 1998. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate ironsulfur cluster assembly. J. Biol. Chem. 273: 31138-31144 https://doi.org/10.1074/jbc.273.47.31138
  34. Sturtz, L. A., K. Diekert, L. T. Jensen, R. Lill, and V. C. Culotta. 2001. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276: 38084-38089
  35. Tsuzi, D., K. Maeta, Y. Takatsume, S. Izawa, and Y. Inoue. 2004. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 565: 148-154 https://doi.org/10.1016/j.febslet.2004.03.091
  36. Veal, E. A., S. J. Ross, P. Malakasi, E. Peacock, and B. A. Morgan. 2003. Ybp1 is required for the hydrogen peroxideinduced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278: 30896-30904 https://doi.org/10.1074/jbc.M303542200
  37. Vido, K., D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474 https://doi.org/10.1074/jbc.M008708200
  38. Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808 https://doi.org/10.1002/yea.320101310
  39. Weiss, A., J. Delproposto, and C. N. Giroux. 2004. Highthroughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae. Anal. Biochem. 327: 23-34 https://doi.org/10.1016/j.ab.2003.12.020
  40. Yoon, S. O., C. H. Yun, and A. S. Chung. 2002. Dose effect of oxidative stress on signal transduction in aging. Mech. Ageing Dev. 123: 1597-1604 https://doi.org/10.1016/S0047-6374(02)00095-7