• Title/Summary/Keyword: xenobiotics

Search Result 154, Processing Time 0.026 seconds

The Effect of Exposure to Mixed Organic Solvents on Lipid Peroxidation in Ship Building Painters

  • Park, Jun-Ho;Cha, Bong-Suk;Chang, Sei-Jin;Koh, Sang-Baek;Eom, Ae-Yong;Lee, Kang-Myeung;Jung, Min-Ye;Choi, Hong-Soon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.360-365
    • /
    • 2008
  • In the last several years, studies on the association of oxidative stress damage with exposure in the work place have been conducted. Xenobiotics create an imbalance of the homeostasis between oxidant molecules and antioxidant defense. By monitoring oxidative stress biomarkers, information was obtained on damages induced by oxidative stress and the toxicity of xenobiotics. In the present study, a Job Exposure Matrix (JEM) was constructed using the data from the Working Environment Measurement (WEM) of painters in the shipyard industry from the past 3 years to assess the exposure status. Additionally, by measuring the concentration of urinary malondialdehyde (MDA), the effect of lipid peroxidation was examined. The subjects consisted of 68 workers who were exposed to mixed organic solvents in the painting process and 25 non-exposure controls. The exposure indices of the exposure groups were significantly different (sprayer: 0.83, touchup: 0.54, assistant: 0.13, P<0.05). The urinary MDA concentration of the exposure group was 48.60${\pm}$ 39.23 ${\mu}mol$/mol creatinine, which was significantly higher than 18.03${\pm}$16.33 ${\mu}mol$/mol creatinine of the control group (P<0.05). From the multiple regression analysis of urinary MDA, the regression coefficient for exposure grade was statistically significant. In future studies, evaluation of the antioxidant levels of subjects should be performed simultaneously with quantitative exposure measurements.

Studies on Synthetic 1,2-Benzothiazine Anti-inflammatory Agents: Pharmacological Effect and the Expression of Xenobiotic-metabolizing Enzymes (1,2-Benzothiazine계열 새로운 항염진통제에 대한 약리작용 및 대사효소발현 유형의 연구)

  • 김상건;조주연;권순경;이은방
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.300-307
    • /
    • 2000
  • Expression of xenobiotic-metabolizing enzymes can be altered by xenobiotics, which represents changes in the production of reactive metabolic intermediates as well as toxicities in tissues. Metabolic intermediates derived from xenobiotics are considered to produce the reactive oxygen species including drug free radicals and hydroxyl free radicals, which would be ultimately responsible for drug-induced toxicities. The effects of 1,2-benzothiazine anti-inflammatory agents on the expression of xenobiotic-metabolizing enzymes including major cytochrome P450s, microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) were studied in the liver with the aim of providing the part of information on potential production of reactive metabolites and hepatotoxicity by the agents. The synthetic compounds 24, 36 and 39 exhibited anti-inflammatory effects in rats as assessed by the Randall-Selitto method. The anti-inflammatory effect was detected as early as at 30 min after gavaging the agents with the ED5O being noted at 80 mg/kg, which was comparable to that of ibuprofen. Treatment of rats with each compound (100 mg/kg, 3d) resulted in no significant induction in the immunochemically-detectable cytochromes P45O 1A1/2, P450 2B1/2, P45O 2 Cl1 and P45O 2El. Changes in the mEN expression were also minimal, as evidenced by both Western blot and Northern blot analyses. Hepatic GST expression was slightly increased by the agents: GST Ya protein and mRNA expression was ~1.5-fold increased after treatment with compounds 24 and 39, whereas GST Yb1/2 and Yc1/2 mRNA levels were elevated 2- to 3-fold. In summary the effects of the synthetic 1,2-benzothiazines on the expression of major P45O, mEH and G57 were not significant, providing evidence that metabolic activation of the agents, potential drug interaction and hepatotoxicity would be minimal.

  • PDF

Biodegradation of Dibenzo-p-dioxin and Dibenzofuran by Bacteria

  • Armengaud, Jean;Timmis, Kenneth N.
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.241-252
    • /
    • 1997
  • Polychlorodibenzofurans and polychlorodibenzo-pdioxins are among the most toxic xenobiotics released into the biosphere and the cause of significant public concern because of their apparent ubiquityalbeit at low levels- in food and environment. Several bacteria able to degrade nonchlorinated dioxin and dibenzofuran and in some cases to attack chlorinated analogues have recently been isolated. This opens up the possibility that bioremediation processes may ultimately be developed to eliminate these toxic compounds from contaminated sites. In this review we summarize current knowledge on the genetics and biochemistry of dioxin and dibenzofruan degradation by Sphingomonas sp. RW1, a gram-negative bacterium, and highlight the unusual nature of the genetic organization of these pathways.

  • PDF

Loss of Integrity: Impairment of the Blood-brain Barrier in Heavy Metal-associated Ischemic Stroke

  • Kim, Jeong-Hyeon;Byun, Hyeong-Min;Chung, Eui-Cheol;Chung, Han-Young;Bae, Ok-Nam
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.157-164
    • /
    • 2013
  • Although stroke is one of the leading causes of death and disability worldwide, preventive or therapeutic options are still limited. Therefore, a better understanding of the pathophysiological characteristics of this life-threatening disease is urgently needed. The incidence and prevalence of ischemic stroke are increased by exposure to certain types of xenobiotics, including heavy metals, suggesting the possible toxicological contribution of these compounds to the onset or aggravation of stroke. Among the potential targets, we have focused on alterations to cerebral endothelial cells (CECs), which play important roles in maintaining the functional integrity of brain tissue.

Chlorothalonil- Biotransformation by Glutathione S- Transferase of Escherichia coli

  • Kim, Young-Mog;Park, Kunbawui;Jung, Soon-Hyun;Park, Jun-Ho;Kim, Won-Chan;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.42-46
    • /
    • 2004
  • It has recently been reported that one of the most important factors of yeast resistance to the fungicide chlorothalonil is the glutathione contents and the catalytic efficiency of glutathione S-transferase (GST) (Shin et al., 2003). GST is known to catalyze the conjugation of glutathione to a wide variety of xenobiotics, resulting in detoxification. In an attempt to elucidate the relation between chlorothalonil-detoxification and GST, the GST of Escherichia coli was expressed and purified. The drug-hypersensitive E. coli KAM3 cells harboring a plasmid for the overexpression of the GST gene can grow in the presence of chlorothalonil. The purified GST showed chlorothalonil-biotransformation activity in the presence of glutathione. Thus, chlorothalonil is detoxified by the mechanism of glutathione conjugation catalyzed by GST.

Assessment of autoimmunogenic potential of autoimmune disease inducing chmecals using the popliteal lymph node assay

  • Kim, Hyung-Soo;Juno H. Eom;Kim, Jin-Ho;Chung, Seung-Tae;Park, Jae-Hyun;Kang, Sun-Kyung;Kim, Dong-Sub
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.113-113
    • /
    • 2001
  • The popliteal lymph node assay (PLNA) was proposed to predict autoimmunogenic potential of xenobiotics. This study was conducted to establish the popliteal lymph node assay(PLNA) and to investigate the measurement of lymphocyte subsets can be utilized as an additional parameter in PLNA.(omitted)

  • PDF

THE EFFECT OF COPROPHAGY ON THE EXPRESSION OF HEPATIC CYP2E1 DURING STARVATION

  • Chung, Hye-Chin;Sung, Sang-Hyun;Kim, Jin-Soo;Kim, Young-Choong;Kim, Sang-Geon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.141-141
    • /
    • 2001
  • Starvation stimulates multiple signaling pathways, which lead to extensive metabolic alterations Starvation potentiates the hepatotoxicity of a variety of small molecules including chlorinated hydrocarbons and nitrosamines through the induction of CYP2E1. A change in CYF2E1 expression during starvation may also alter the pharmacokinetic profiles of xenobiotics.(omitted)

  • PDF

Metabolomics, a New Promising Technology for Toxicological Research

  • Kim, Kyu-Bong;Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • Metabolomics which deals with the biological metabolite profile produced in the body and its relation to disease state is a relatively recent research area for drug discovery and biological sciences including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate analysis, has been considered a promising technology because of its advantage over other toxicogenomic and toxicoproteomic approaches. The application of metabolomics includes the development of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests, high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of multiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often shows changes in response to exposure to xenobiotics or disease-induced stress, because of the biological system's attempt to maintain homeostasis. In this review, we focus on the most recent advances and applications of metabolomics in toxicological research.

Estimation of Human Flavin-containing Monooxygenases Activity(FMO1) in the Baculovirus Expression Vector System by using S-oxidation of Methimazole

  • Kim, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.415-421
    • /
    • 1999
  • The flavin-containing monooxygenases (FMOs) (EC 1.14. 13.8) are NADPH-dependent flavoenzymes that catalyze oxidation of soft nucleophilic heteroatom centers in a range of structurally diverse compounds including foods, drugs, pesticides, and other xenobiotics. In humans, FMOl appears to be the predominant form expressed in human fetal liver. cDNA-expressed human FMO and human liver microsomal FMO have been observed to N- and S-oxy-genate nucleophilic nitrogen- and sulfur-containing drugs and chemicals, respectively. In the present study, FMOl can be expressed in the baculovirus expression vector system at level of 2.68 nmol FMOl/mg of membrane protein. This isoform was examined for its capacity to metabolize methimazole to its S-oxide using thiocholine assay. Kinetic studies of its S-oxide by recombinant human FMO1 result in Km of 7.66 $\mu$M and Vmax of 17.79 nmol/min/mg protein.

  • PDF

Free radical scavenging phenolic compounds of the leaves of Juglans sinensis

  • Kim, Mi-Hee;Ko, Eun-Kyung;Jun, Jung-Yang;Li-Xun;Oh, Myung-Hun;An, Nyeon-Hyoung;Kim, Youn-Chul
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.381.3-382
    • /
    • 2002
  • Free radical-mediated cell damage and free radical attack on polyunsaturated fatty acids result in the formation of lipid radicals. These lipid radicals react readily with molecular oxygen to produce peroxy radicals responsible for initiating lipid peroxidation. The peroxidation of cellular membrane lipid can lead to cell necrosis and considered to be implicated in a number of pathophysiological conditions as well as in the toxicity of many xenobiotics. DPPH is known to abstract labile hydrogen and the ability to scavenge the DPPH radical is related to the inhibition of lipid peroxidation. (omitted)

  • PDF