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Metabolomics which deals with the biological metabolite profile produced in the body and its rela-

tion to disease state is a relatively recent research area for drug discovery and biological sciences

including toxicology and pharmacology. Metabolomics, based on analytical method and multivariate

analysis, has been considered a promising technology because of its advantage over other toxico-

genomic and toxicoproteomic approaches. The application of metabolomics includes the develop-

ment of biomarkers associated with the pathogenesis of various diseases, alternative toxicity tests,

high-throughput screening (HTS), and risk assessment, allowing the simultaneous acquisition of mul-

tiple biochemical parameters in biological samples. The metabolic profile of urine, in particular, often

shows changes in response to exposure to xenobiotics or disease-induced stress, because of the

biological system’s attempt to maintain homeostasis. In this review, we focus on the most recent

advances and applications of metabolomics in toxicological research.
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INTRODUCTION

Metabolomics (or metabonomics), a newly catego-

rized ‘-omis’, is derived from the Greek roots 'meta'

meaning change and ‘nomos’ meaning rules or laws, to

provide insight into the generation of pattern recogni-

tion-based models that are able to classify or predict

changes in biological metabolism (Nocholson et al.,

1999; Watkins and German, 2002; Lindon et al., 2004).

Metabolomics is generally defined as the systemic

investigation of the unique metabolite network or finger-

print which explains specific biological or etiological sta-

tus with change of metabolome, the collection of all

metabolites produced in biological systems (Lindon et

al., 2003). Metabolomes, relatively small molecular

weight proteins of 100-1000 and the end products of

biological organism’s gene expression, are generally

analyzed by mass spectrometry. Nicholson et al. (1999)

defined ‘metabonomics’ as the quantitative measurement

of the dynamic multi-parametric metabolic response of

living systems to patho-physiological stimuli or genetic

modification. There is no significant difference between

the terms metabolomics and metabonomics, but the

term metabolomics rather than metabonomics has been

used because ‘metabolomics’ is more commonly used.

Metabolomic strategies aim to detect changes in the

distribution and concentration of a broad range of

endogenous metabolites and can be applied to multiple

levels of biological system: from single cell to whole

organism (Celia et al., 2002). The ‘omics’ suffix has

come to signify the determination of a targeted level of

biological molecules and information (Yang et al., 2009).

Therefore, genomics measures the entire genetic

makeup of an organism, while proteomics analyzes all

the proteins expressed under given conditions (Hrmova

and Fincher, 2009; Rampitsch et al., 2009). Metabolom-

ics is not exceptional. Its relationship to the other

‘-omics’ (toxicogenomics and toxicoproteomics) is repre-

sented in Fig. 1. Metabolism is the biochemical modifi-

cation of chemical compounds by interaction with catalytic

enzymes in living organisms or cells. This includes the

biosynthesis of complex organic molecules (anabolism)

and their breakdown (catabolism) into small ones.

Metabolism usually consists of sequences of enzymatic

steps, also called metabolic pathways. The total metab-

olisms are all biochemical processes of an organism,
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whereas the cellular metabolism includes all chemical

processes in a cell. Important metabolic pathways are

composed of general pathways (carbohydrate, fatty acid,

and citric acid metabolisms), catabolism, anabolism, and

drug metabolism (Nealson and Conrad, 1999; Raman

et al., 2005; Testa and Kramer, 2006). A metabolome is

generally termed as the whole set of metabolic small

entities in a cell, tissue, organ, organisms, and species

(Allen et al., 2003). It includes small circuits of pathway

networks. The very large portion of metabolome study

has been metabolic engineering to produce industrially

meaningful compounds (Wu et al., 2005). Metabolom-

ics is the method of studying, profiling and fingerprint-

ing metabolites in various physiologic states (Fiehn et

al., 2002) (Table 1). Metabolite profiling is a main tool

for the analysis of a class of metabolites. Metabolomics

aims to include all classes of endogenous metabolites

and utilizes metabolic fingerprinting of them to maintain

a rapid classification of biological samples according to

their origin and biochemical relevance (Nicholson et al.,

1999; Lindon et al., 204). In order to optimize and uti-

lize metabolomics, a stable and reproducible metabolite

fingerprint must be established (Bino et al., 2004).

Metabolomic techniques are looking for a way to ana-

lyze changes to those endogenous biomolecules caused

by xenobiotic toxicity or drug efficacy. In toxicological

research, metabolomics is also viewed as holding

great promise, including use in specific biomarker dis-

covery for clinical diagnostics and drug discovery. In this

review, the brief analytical technologies for metabolom-

ics are summarized, the current toxicological applica-

tions of metabolomics are described, and then the

prospective future of metabolomics for toxicology is dis-

cussed.

Fig. 1. The “OMICS” technologies involved in toxicological

research. The integration of “omics” sciences might lead to

a better comprehensive understanding of toxicological sci-

ences.

Table 1. General terminology for metabolite analysis

General areas Description

Target compound analysis - The quantification of specific metabolites

Metabolic profiling - Quantitative or qualitative determination of a group of related compounds or of members of spe-

cific metabolic pathways

Metabolomics - Qualitative and quantitative analysis of all metabolites

Metabolic fingerprinting - Sample classification by rapid and global analysis without extensive compound identification

Table 2. Analytical methods used for characterization of metabolites

Analytical methods Feature Ref.

NMR spectroscopy

- Cheap after initial purchase

- Robust and reliable 

- Minimal sample preparation

- High throughput

- Significant metabolite overlap

- Large initial outlay

 Reo et al., 2002

 Nicholson et al., 1989

 Raamsdonk et al., 2001

GC-MS

- Excellent sensitivity

- No need to derivatise

- More global than NMR or GC-MS

- Either specific or global

- LC reproducibility is less than GC

- Ion suppression can impede some metabolite detection

 Fiehn et al., 2002

 Fiehn et al., 2000

LC-MS

- Good sensitity

- Cheap to purchase

- Good identification software

- Good chromatograms compared to LC-MS

 Wilson et al., 2003
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ANALYTICAL TECHNOLOGIES

Metabolomics is a multi-disciplinary technology, requir-

ing cooperation between toxicologists, pharmacologists,

chemists, biologists and informaticians. Current metabo-

lomics practice has mainly relied on mass spectrometry

(MS) and nuclear magnetic resonance (NMR) spectros-

copy. The MS requires a preseparational procedure of

metabolites using gas chromatography (GC) or liquid

chromatography (LC) (Table 2). It’s almost impossible to

detect the whole population of metabolites in a system

with single analytical method. Isolation of metabolites

from biological samples requires the preparation of an

extract. The choice of solvent used for this initial extrac-

tion process directly affects the chemical classes of

compounds present in that extract. Furthermore, no

spectroscopic method is available for the detection of all

classes of metabolites.

Therefore, a variety of comprehensive and targeted

methods need to be applied and the data integrated in

order to provide a complete profile of metabolic status.

A schematic representation of the sample preparation

process for metabolite analysis, from tissue treatment to

data analysis, is given in Fig. 2. In any case, compre-

hensive quantitative and qualitative determination of

metabolites in biological samples may require parallel

implementation of several processing and detection

methods (Dunn and Ellis, 2005). All metabolomics stud-

ies produce complex multivariate data sets that need to

be interpreted using chemometric and bioinformatic

methods (Nicholson et al., 1999).

NMR. Proton (1H) NMR can detect any metabolites

containing hydrogen (Table 3). Signals can be assigned

by comparison with libraries of reference compounds, or

by two-dimensional NMR. The 1H NMR spectra of

crude biological tissue extracts are inevitably crowded

with many overlapped signals, not only because there

is a large number of contributing compounds, but also

because of the low overall chemical shift dispersion. 1H

NMR spectra are also complicated by spin-spin cou-

plings which add to signal multiplicity, although they are

an important source of structural information (Griffin et

al., 2003). In 13C NMR, the chemical shift dispersion is

twenty times greater and spin-spin interactions are

removed by decoupling. Despite these advantages, the

low sensitivity of 13C NMR prevents its routine use with

complex extracts (Kenney et al., 2003; Bundy et al.,

2003).

Gas chromatography. Gas chromatography (GC)

provides compound separations with high-resolution

and can be used in conjunction with a flame ionization

detector (GC/FID) or a mass spectrometer (GC/MS).

Both detection methods are highly sensitive and able to

detect almost any organic compound, regardless of its

class or structure. However, some of the metabolites

found in biological samples are too involatile to be anal-

Table 3. NMR-based metabolomics and potential biomarkers

Type Sample Biomarkers Ref.

Neurochemicals

TTX(tetrodotoxin):

rat frontal cortex.

Cerebrospinal fluid

(CSF)

- Glutamate, isoleucine, valine, alanine,

α- and β-hydroxybutyrate↓
Khandelwal et al., 2004

Myocardial ischemia. Tissues
- Plasma: lactate, acetate, acetone

- Brain: glycerol, succinate, propionate, lactate
Price et al., 2005

Dominant-submissive 

relationships: rats
Urine

- Milk sugar consumption, urinary galactose

normalized to creatinine
Leo et al., 2005

Dietary influence

(healthy British, 

Swedish subjects)

Urine - Trimethylamine-N-oxide (TMAO)↑ taurine↑ Lenz et al., 2004

Fig. 2. Schematic diagram of the procedure for metabolo-

mic approach.
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ysed directly by GC methods. Therefore, the compounds

have to be converted to less polar, more volatile deriva-

tives before they are applied to the GC column.

High performance liquid chromatography (HPLC).

HPLC, with UV detection, is a common method used

for targeted analysis of biological samples and for meta-

bolic profiling of individual classes (Fan et al., 2005).

Derivatisation is not essential. Selection of compounds

arises initially from the type of solvent used for extrac-

tion and then from the type of column and detector. For

example, HPLC/UV will only detect compounds with a

suitable chromophore; a column selected for its ability

to separate one class of compounds will not generally

be useful for other types. HPLC profiling methods all

rely, to a great extent, on comparisons with reference

compounds. The full UV spectrum (measured for each

peak when UV-diode array detectors are used) gives

some useful information on the nature of compounds in

complex profiles, but often indicates the class of the

compound rather than its exact identity (Plumb et al.,

2002).

LC/MS, LC/MS/MS and LC/NMR. LC/MS, LC/MS/

MS and LC/NMR are powerful solutions to the prob-

lems of detector generality and structure determination.

LC/MS can be used to detect compounds that are not

well characterized by other methods (those that are not

easily derivatised), lie above the available GC/MS mass

range, or do not contain good chromophores for con-

ventional HPLC (Wilson et al., 2005). The electrospray

ionization (ESI) technique has made polar molecules

accessible to direct analysis by MS, as well as being

compatible with HPLC separations (Buchholz et al.,

2001). Quantification of multiple compounds in crude

extracts can, in principle, be achieved the same way as

GC/MS, with high sensitivity. However, automation of

the procedure presents greater practical difficulties (Jon-

sson et al., 2004). LC/MS/MS provides additional struc-

tural information that can be a very useful aid in the

identification of new or unusual metabolites, or in the

characterization of known metabolites in cases where

ambiguity exists. LC/NMR combines the superior struc-

ture-determining power of NMR with HPLC in a flow

system (Exarchou, 2005).

Direct injection into high-resolution MS. It is pos-

sible to obtain metabolite ‘mass profiles’ without any

chromatographic separation. Such profiles are obtained

by injecting crude extracts into the source of a high-res-

olution mass spectrometer (Dunn and Ellis, 2005). Elec-

trospray ionization (ESI) or atmospheric pressure chemical

ionization (APCI) generates mainly protonated, deproto-

nated or adduct molecules, such as [M+H]+, [M+cat-

ion]+ or [M-H]- for each species present in the mixture,

with little or no fragmentation (Nordstrom et al., 2008).

Thus, a fingerprint spectrum is obtained with a single or

a few peaks for each metabolite, which are separated

from other metabolites according to (accurate) molecu-

lar mass. The fingerprint can be used as a classifica-

tion tool. Some mass analyzers (e.g., fourier transform

ion cyclotron resonance instruments, FT-ICR-MS) are

capable of ultra-high resolution and permit the mass to

be determined to four or five decimal places (Brown et

al., 2005). This allows empirical formulae to be assigned

to peaks. Additionally, the coupling of high sensitivity

with high resolution provides a rapid method of estimat-

ing the number of metabolites present and a valuable

first indication, from the formulae, of their possible iden-

tities. Its main weakness is the inability to separate iso-

mers of the same molecular mass (Pitt et al., 2002).

FT-ICR mass spectrometry. Fourier transform (FT)-

ion cyclotron resonance (ICR) mass spectrometry (MS)

has traditionally not been widely used. FT-ICR spec-

trum can measure many mass spectra per second,

making it increasingly attractive in the pharmaceutical

industry because of its ability to deliver more informa-

tion per measurement (Brown et al., 2005). FT-ICR pro-

vides ultra-high mass resolution and mass accuracy,

non-destructive detection, high sensitivity and multi-

stage MSn (Brown et al., 2005). It has undergone rapid

development and is now applied in many fields. High

mass accuracy ensures rapid protein identification with

high confidence based on single peptide mass mea-

surements (Brown et al., 2005). Many metabolites are

in a mass range where FT-ICR can give immediate ele-

mental composition, enabling direct identification with-

out MS/MS, by comparison with public or locally

generated databases (Zhang et al., 2005).

Multivariate statistical analysis (pattern recogni-

tion methods). Pattern recognition (PR) and related

multivariate statistical approaches can be used to dis-

cern significant patterns in complex multivariate data

sets and are particularly appropriate in situations where

there are more variables than samples in the data set

(Lindon et al., 2004). The general aim of PR is to clas-

sify objects or to predict the origin of objects based on

identification of inherent patterns in a set of measure-

ments (Dunn et al., 2005). PR methods can reduce the

dimensionality of complex data sets via 2 dimensions

(2D) or 3 dimensions (3D) mapping procedures, thereby

facilitating the visualization of inherent patterns in the
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data. Methods such as principal components analysis

(PCA) are termed ‘unsupervised’ techniques, in that no

a priori knowledge of the class of the samples is

required, and they are based on the calculation of latent

variables (Weckwerth and Morgenthal, 2005). Principal

components are linear combinations of the original de-

scriptors, such that they are uncorrelated, and describe

decreasing amounts of data variance (that is, PC1 >

PC2 > PC3 and so on). Use of PCA enables the ‘best’

representation, in terms of biochemical variation in the

data set, to be shown in 2D or 3D. In addition, multi-

parametric data can be modeled, so that the class of a

sample from an independent data set can be predicted

on the basis of a series of mathematical models that

are derived from the original data or ‘training’ set. These

methods are known as ‘supervised’ methods, and use

class information to maximize the separation between

classes (Weckwerth and Morgenthal, 2005). Supervised

methods, such as soft independent modeling of classifi-

cation analogy (SIMCA), partial least squares (PLS)

analysis and PLS discriminant analysis (PLS-DA), can

be used to predict objects that are unknown to the sys-

tem on the basis of their NMR spectral properties or

MS profiles, and are therefore valuable for generating

models for predicting chemical toxicity, drug efficacy,

disease status, and so on (Kim et al., 2008; Quinones

and Kaddurah-Daouk, 2009; Um et al., 2009).

Artificial neural networks (ANN). Artificial neural

(or neuronal) networks (ANN) are simplified mathemati-

cal models of a biological neuronal system (Mao et al.,

1995). They ‘learn’ from existing data sets and are ‘opti-

mized’ by specific algorithms (Mao et al., 1995). Neu-

rons can ‘activate’ their neighbors according to certain

mathematical rules such as those developed by Hopfield

(1982). They may then recognize familiar patterns, cor-

rect errors and remember sequences of events. An

ANN takes the input data (e.g., gene expression data)

and builds a network to predict either the categorical or

continuous responses (Ripley et al., 1996). They are

‘robust’ to a moderate amount of ‘noise’ in the data, but

if the number of input variables (genes) > 1000, then

the technique requires intensive computer-aid.

Linear discriminant analysis (LDA). LDA is a sta-

tistical technique that can be used for the classification

of individuals into mutually exclusive and exhaustive

groups based on a set of independent variables. The

LDA involves finding a linear combination of the inde-

pendent variables that minimizes the probability of mis-

classifying the individuals into their respective groups

(Goodacre, 2005).

TOXICOLOGICAL APPLICATIONS

Using metabolomic technology, researchers are able

to systematically determine metabolite concentration in

a sample. This new technology has the potential for

application in the areas of drug discovery/development

and preventive screening/diagnostics (Table 4). Research

continues to refine this technology in an effort to put

these applications to use as quickly as possible (Lin-

don et al., 2004). Metabolic profiling (of biological sam-

ples such as urine or blood plasma) can be generally

used to determine the physiological changes induced

by toxic effect of a chemical (or mixture of chemicals)

(Kim et al., 2008, 2009). The observed metabolic changes

can be closely related to specific toxicity, e.g. specific

hepatic or renal lesions (Nicholson et al., 1985; Kim et

al., 2008; Park et al., 2009). This is of particular inter-

est to pharmaceutical companies that want to evaluate

the toxicity of new drug candidates. If a new compound

can be screened for adverse toxicity before it reaches

clinical trials, then companies gain the advantage of

being able to save the enormous cost of these trials

(Lindon et al., 2004). Metabolomics is emerging as an

Table 4. Application of metabolomics

Application Ref.

Drug Discovery

- The major aim is to increase compound attrition in drug discovery.

- Reduce compound attrition in development and clinical analysis.

- Help explain reasons for toxicity.

- Produce expert system to identify toxicity.

Zhang et al., 2005

Wang et al., 2009

Biomarker

identification

- Markers of drug toxicity.

- Markers of drug efficacy.

Kim et al., 2008

Nicholson et al., 1985

Park et al., 2009

Human disease diagnosis

and personalized medicine

Yang et al., 2004a, b

Clayton et al., 2006

Agriculture - Measurement and identification of unintended effects of genetic modification. Roessner et al., 2001

Nutrition - Naturally functional foods. Gidley et al., 2004
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excellent tool for elucidating the phenotype induced by

a genetic modification, such as gene insertion or dele-

tion. Metabolomics has the unique ability to relate direct

phenotypic change with metabolic profile rather than

genomics or proteomics (Holmes and Antti, 2002). It is

more exciting to predict the function of unknown genes

by comparing the metabolic perturbations induced by

insertion/deletion of known genes. Saccharomyces cer-

evisiae and Arabidopsis thaliana are good model organ-

isms for such advances in metabolomics and functional

genomics (Allen et al., 2003; Saito and Matsuda, 2008).

Biomaker discovery for candidate drugs. One of

the most interesting goals of pharmaceutical industry is

to select robust new drug candidates for development

or screen them for adverse effects in order to save

money and time. Early preclinical screening of candi-

date drug toxicity is cost-effective and can suggest

expected harmful side effects in clinical trials in drug

development (Lindon et al., 2004). Therefore, an impor-

tant issue has been emerging to assess and screen

toxicity of new molecular entities in early stages of new

drug development. Biomarker discovery has been one

of representative applications using metabolomics (Table

5). Consortium for Metabonomic Toxicology (COMET)

has recently explored the evaluation of xenobiotic toxic-

ity by biomarkers using metabolomics (Lindon et al.,

2003). COMET was formed between Imperial College

London, UK and 6 major pharmaceutical companies to

apply metabolomics data produced using 1H NMR

spectroscopy of urine and blood serum samples to pre-

clinical toxicological screening of candidate drugs (Ebbels

et al., 2007). Kim et al. (2008) reported that endoge-

nous metabolites of allantoin, citrate, taurine, 2-oxoglut-

arate, acetate, lactate, phenylacetyl glycine, succinate,

phenylacetate, 1-methylnicotinamide, hippurate, and

benzoate were closely related to hepatotoxicity caused

by CCl4, acetaminophen, and D-galactosamine using

600 M 1H NMR spectroscopy. These results suggested

that these endogenous metabolites could be used as

putative biomarkers for preclinical hepatotoxicity. Recently,

high throughput toxicity and safety screening methods

were developed through a combination of metabolite

profiles (Ebbels et al., 2007). Schoonen et al. (2007)

reported that the total NMR dataset of rat urine showed

more sensitivity to liver toxicity caused by bromoben-

zine and paracetamol than histopathology and clinical

chemistry.

In addition, phospholipid metabolic profiles were stud-

ied and potential biomarkers were identified in rat

plasma using HPLC-MS after γ-irradiation exposure (Wang

et al., 2009). Phosphatidylethanolamine and phosphati-

dylserine were assigned to be biomarkers for exposure

to gamma-rays. Metabolomic investigation of toxicity

caused by doxorubicin (adriamycin) was performed in

rats using NMR spectroscopy (Park et al., 2009). Pres-

ence of trimethylamine N-oxide (TMAO), glucose, lac-

tate, alanine, and valine were related to renal toxicity

induced by doxorubicin and creatine, phentlacetylgly-

cine, N-methylnicotinic acid, and hippurate levels were

suggestive of liver injury (Park et al., 2009). Metabolic

profiling of realgar in rats was recently studied for toxi-

cological effects using NMR spectroscopy (Wei et al.,

2009). Various endogenous metabolites were sug-

gested as biomarkers correlated to liver and kidney

toxicity caused by realgar. Metabolomic studies for

Table 5. Metabolomic biomarkers associated with target organ toxicity

Target organ Toxicants Biomarkers Ref. 

Liver toxicity

Allyl alcohol
↑ creatinine, lactate, phenylacetyl glycine,

↓ N-methyl nicotinamide, taurine
Beckwith-Hall et al., 1998

Bromobenzene
↑ 5-oxoproline, glucose, acetate, lactate

↓ citrate, α-ketoglutarate, succinate
Waters et al., 2006

α-Naphthylisocyanate
↑ taurine, creatine, glucose

↓ citrate, α-ketoglutarate, succinate
Waters et al., 2001

Methapyrilene
↑ succinate, triglyceride, dimethylglycine, trimethylamine-N-oxide

↓ glucose, glycogen
Craig et al., 2006

Hydrazine
↑ β-alanine, 3-D-hydroxybutyrate, citrulline, N-acetyl-citrulline

↓ trimethylamine-N-oxide
Bollard et al., 2005

Renal toxicity

Gentamicin
↑ glucose

↓ trimethylamine-N-oxide
Lenz et al., 2005

Cisplatin
↑ alanine, leucine, glucose, 2-oxoglutarate, pyruvate, valine

↓ trimethylamine
Garrod et al., 2001

Mercuric chloride
↑ acetate, amino acids, glucose, organic acids

↓ citate, creatinine, hippurate, α-ketoglutarate, succinate.
Nicholson et al., 1985
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investigation of biomarker discovery have been carried

out and several endogenous metabolites were useful for

prediction or screening of specific toxic effects caused

by chemicals.

Connections to genomics and proteomics. Metab-

olomics can be very useful for functional genomics and

proteomics. Many companies that invested in genomic

and proteomic approaches have augmented their work

with metabolomic technologies (Nicholson et al., 1999).

For example, if a company is interested in a specific

gene, but it is not sure what the gene product does, it

can create a gene knock-out and compare its meta-

bolic profile against that of the wild-type. This will give

direct information as to the function of a protein and its

coding gene. There is a linear progression of biological

events, from genomics to metabolomics, which opens a

new post-genomic era and a new approach to eluci-

date mechanisms of toxicities in toxicological research:

e.g. the analysis of genetic variation (toxicogenomics),

gene expression (transcriptomics), gene products (toxi-

coproteomics) and their metabolic effects (metabolom-

ics) (Kell, 2004). The genetic approach to unravel the

complexity inherent within human biology is very lim-

ited. But, it provides only one layer of complexity. To

understand common human disease traits, the integra-

tion of multiple ‘omics’ datasets is required (Zhu et al.,

2007). As seen in recent literature, there have been

attempts to combine two datasets related to clinical

phenotype, such as pharmacogenomics, toxicogenom-

ics, epigenetics, and metagenomics. Recently, combining

genetics and metabolomics has been applied. Choles-

terol-associated susceptible genes for Alzheimer’s dis-

ease were identified by combining genetics with sterol

metabolic profiling (Papassotiropoulos et al., 2005). The

ratio of metabolites was used to identify the function of

putative genes (Gieger et al., 2008). Stylianou and col-

leagues (2008) linked proteomics to quantitative trait loci

(QTL) to identify changes in function rather than the

protein quantification. To elucidate complex biological

phenomenon, combining multiple types of technologies,

including genetics, transcriptomics, proteomics and

metabolomics, should be performed.

Disease diagnosis. Recently, metabolomics stud-

ies have been used to screen the patients for general

metabolic disorders using NMR analysis (van Doorn et

al., 2007). There has been a report that analysis of

serum lipid profiles using NMR could discriminate tumors

(83%) and non-tumors (8%) from 52 patients diag-

nosed as coronary heart disease (Brindle et al., 2002).

Colon cancer and coronary heart disease could be pre-

cisely diagnosed from healthy volunteers through neu-

ral network analysis and classification of NMR spectra

of lipoprotein fractions (Bathen et al., 2000). Moreover,

testosterone and its metabolites, epitestosterone and

dihydrotestosterone were measured from human hair

using GC-MS (Choi et al., 2001). Hair samples from

bald men presented separate metabolic profiles from

healthy volunteers and testosterone/epitestosterone ratio

was suggested as biochemical biomarker useful for

diagnosis of early baldness (Choi et al., 2001). Research

on the correlation between cervical cancer and urinary

polyamines and endogenous steroids using MS, showed

that the ratios of 16α-hydroxyestrone/2-hydroxyestrone,

5β-tetrahydrocortisol/5a-tetrahydrocortisol, and putresine/

N-acetylspermidine were very crucial for diagnosis of

cervical cancer (Lee et al., 2003). After liver fibrosis and

cirrhosis were progressively induced by thioacetamide

in rats, liver extracts and serum were analyzed using
1H NMR to characterize the stage of fibrosis (Constanti-

nou et al., 2007). PCA profiles from lipid liver extract

and serum showed the progress of fibrosis and cirrho-

sis. Serum leucine, isoleucine, valine, lactate, alanine,

acetate, acetoacetate, glutamine, trimethylamine, creat-

ine, and glucose were sensitively influenced during liver

fibrosis and cirrhosis caused by thioacetamide and this

study could be extended in clinical diagnosis for man-

agement of cirrhotic patients (Constantinou et al., 2007).

Cerebrospinal fluid (CSF), a clear bodily fluid that occu-

pies the subarachnoid space and the ventricular sys-

tem around and inside the brain, can serve as a

metabolomic sample for investigating Alzheimer’s dis-

ease, meningitis, and so on. CSF samples were used

to distinguish normal subjects from those with meningi-

tis using NMR spectroscopy (Coen et al., 2005). Early

detection of oral cancer using NMR spectroscopy was

studied in patients’ serum (Tiziani et al., 2009). Serum

metabolite profile completely discriminated cancer patients

from control group and also between different stages of

oral cancer (Tiziani et al., 2009). Normal colon tissues

and colorectal cancer tissues were analyzed with GC-

TOF (time-of-flight)-MS to investigate metabolomic pro-

filing of human colon carcinoma (Denkert et al., 2008).

In cancer, intermediates of the TCA cycle and lipids

were down-regulated, whereas urea cycle metabolites,

purines, pyrimidines and amino acids were up-regu-

lated compared to normal samples (Denkert et al.,

2008).

Risk assessment. Metabolomics can be of great

interest to risk assessment of toxic substances. There

are two advantages of metabolomics for risk assess-

ment: understanding molecular mechanisms of toxicity
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and sensitive exposure assessment. Kim et al. (2009)

studied the exposure assessment of methoxyclor, an

organochlorine pesticide, to rats using urinary NMR

spectral data and compared it with traditional exposure

of methoxyclor, using uterotrophic assay, in ovariecto-

mized female rats for 3 consecutive days. Metabolom-

ics dataset was much more sensitive to methoxyclor

rather than traditional uterotrophic assay and the endog-

enous metabolites of acetate, alanine, benzoate, lac-

tate and glycine were suggested as putative exposure

biomarkers for an endocrine disruptor of methoxyclor

(Kim et al., 2009). Nonylphenol is an environmental

contaminant and endocrine disrupting chemical. Lee et

al. (2007) investigated the metabolomic profiles for

endocrine toxic effects caused by nonylphenol, using

GC-MS. Urinary tetrahydrocorticosterone and 5α-tet-

rahydrocorticosterone were suggested as possible bio-

markers of nonylphenol-induced toxicity or exposure.

Future prospects and concluding remarks. Metab-

olomics has been considered an emerging and promis-

ing technology in toxicological research, although its val-

idation is required. Using metabolomics, the data has

shown that combinational biomarkers for toxicity or dis-

ease were identified, which were able to monitor the

toxicity or efficacy of chemicals or drugs in preclinical or

clinical trials. Also, new biochemical assays for disease

diagnosis were derived using NMR or MS analysis. As

one part of multiple ‘omics’ technologies, metabolomics

plays an important role in understanding biological phe-

nomenon because it’s very close to the phenotype of

biological effects. Risk assessment is a very promising

area to explore toxic mechanism or exposure assess-

ment using metabolomics. One thing that needs to be

pointed out for metabolomics is totally based on analyti-

cal method and multivariate analysis. Therefore, the

analytical procedures should be stable, robust, and

highly reproducible. Multivariate analysis can turn com-

plex dataset into readable and interpretable. In contrast

to other ‘omics’, metabolomics has the advantage of

having a good level of biological reproducibility, low cost

of per sample, minimal invasion of sampling, and direct

identification of phenotypes with real biological end-

points. However, it requires a further research for valida-

tion, specificity, and sensitivity for the prediction of toxic

manifestations. In addition, a comparative relationship

between conventional biomarkers and new biomarkers

derived from metabolomics should be needed.
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