• Title/Summary/Keyword: write endurance

Search Result 32, Processing Time 0.015 seconds

Write Request Handling for Static Wear Leveling in Flash Memory (SSD) Controller

  • Choo, Chang;Gajipara, Pooja;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.181-185
    • /
    • 2014
  • The lifetime of a solid-state drive (SSD) is limited because of the number of program and erase cycles allowed on its NAND flash blocks. Data cannot be overwritten in an SSD, leading to an out-of-place update every time the data are modified. This result in two copies of the data: the original copy and a modified copy. This phenomenon is known as write amplification and adversely affects the endurance of the memory. In this study, we address the issue of reducing wear leveling through efficient handling of write requests. This results in even wearing of all the blocks, thereby increasing the endurance period. The focus of our work is to logically divert the write requests, which are concentrated to limited blocks, to the less-worn blocks and then measure the maximum number of write requests that the memory can handle. A memory without the proposed algorithm wears out prematurely as compared to that with the algorithm. The main feature of the proposed algorithm is to delay out-of-place updates till the threshold is reached, which results in a low overhead. Further, the algorithm increases endurance by a factor of the threshold level multiplied by the number of blocks in the memory.

Improving Energy Efficiency and Lifetime of Phase Change Memory using Delta Value Indicator

  • Choi, Ju Hee;Kwak, Jong Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.330-338
    • /
    • 2016
  • Phase change memory (PCM) has been studied as an emerging memory technology for last-level cache (LLC) due to its extremely low leakage. However, it consumes high levels of energy in updating cells and its write endurance is limited. To relieve the write pressure of LLC, we propose a delta value indicator (DVI) by employing a small cache which stores the difference between the value currently stored and the value newly loaded. Since the write energy consumption of the small cache is less than the LLC, the energy consumption is reduced by access to the small cache instead of the LLC. In addition, the lifetime of the LLC is further extended because the number of write accesses to the LLC is decreased. To this end, a delta value indicator and controlling circuits are inserted into the LLC. The simulation results show a 26.8% saving of dynamic energy consumption and a 31.7% lifetime extension compared to a state-of-the-art scheme for PCM.

A Hierarchical Binary-search Tree for the High-Capacity and Asymmetric Performance of NVM (비대칭적 성능의 고용량 비휘발성 메모리를 위한 계층적 구조의 이진 탐색 트리)

  • Jeong, Minseong;Lee, Mijeong;Lee, Eunji
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • For decades, in-memory data structures have been designed for DRAM-based main memory that provides symmetric read/write performances and has no limited write endurance. However, such data structures provide sub-optimal performance for NVM as it has different characteristics to DRAM. With this motivation, we rethink a conventional red-black tree in terms of its efficacy under NVM settings. The original red-black tree constantly rebalances sub-trees so as to export fast access time over dataset, but it inevitably increases the write traffic, adversely affecting the performance for NVM with a long write latency and limited endurance. To resolve this problem, we present a variant of the red-black tree called a hierarchical balanced binary search tree. The proposed structure maintains multiple keys in a single node so as to amortize the rebalancing cost. The performance study reveals that the proposed hierarchical binary search tree effectively reduces the write traffic by effectively reaping the high capacity of NVM.

Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches (비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계)

  • Joo, Yongsoo;Kim, Myeung-Heo;Han, In-Kyu;Lim, Sung-Soo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.

Exploiting Memory Sequence Analysis to Defense Wear-out Attack for Non-Volatile Memory (동작 분석을 통한 비휘발성 메모리에 대한 Wear-out 공격 방지 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.86-91
    • /
    • 2022
  • Cache bypassing is a scheme to prevent unnecessary cache blocks from occupying the capacity of the cache for avoiding cache contamination. This method is introduced to alleviate the problems of non-volatile memories (NVMs)-based memory system. However, the prior works have been studied without considering wear-out attack. Malicious writing to a small area in NVMs leads to the failure of the system due to the limited write endurance of NVMs. This paper proposes a novel scheme to prolong the lifetime with higher resistance for the wear-out attack. First, the memory reference pattern is found by modified reuse distance calculation for each cache block. If a cache block is determined as the target of the attack, it is forwarded to higher level cache or main memory without updating the NVM-based cache. The experimental results show that the write endurance is improved by 14% on average and 36% on maximum.

The NAND Type Flash EEPROM Using the Scaled SONOSFET (Scaled SONOSFET를 이용한 NAND형 Flash EEPROM)

  • 김주연;권준오;김병철;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.145-150
    • /
    • 1998
  • 8$\times$8 bit scaled SONOSFET NAND type flash EEPROM that shows better characteristics on cell density and endurance than NOR type have been designed and its electrical characteristics are verified with computer aided simulation. For the simulation, the spice model parameter was extracted from the sealed down SONOSFET that was fabricated by $1.5mutextrm{m}$ topological design rule. To improve the endurance of the device, the EEPROM design to have modified Fowler-Nordheim tunneling through the whole channel area in Write/Erase operation. As a result, it operates Write/Erase operation at low current, and has been proven Its good endurance. The NAND type flash EEPROM, which has upper limit of V$_{th}$, has the upper limit of V$_{th}$ as 4.5V. It is better than that of floating gate as 4V. And a EEPROM using the SONOSFET without scaling (65$\AA$-l65$\AA$-35$\AA$), was also designed and its characteristics have been compared. It has more possibliity of error from the V$_{th}$ upper limit as 4V, and takes more time for Read operation due to low current. As a consequence, it is proven that scaled down SONOSFET is more pertinent than existing floating gate or SONOSFET without scaling for the NAND type flash EEPROM.EPROM.

  • PDF

Dual Write Buffer Algorithm for Improving Performance and Lifetime of SSDs (이중 쓰기 버퍼를 활용한 SSD의 성능 향상 및 수명 연장 기법)

  • Han, Se Jun;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • In this paper, we propose a hybrid write buffer architecture comprised of DRAM and NVRAM on SSD and a write buffer algorithm for the hybrid write buffer architecture. Unlike other write buffer algorithms, the proposed algorithm considers read pages as well as write pages to improve the performance of storage devices because most actual workloads are read-write mixed workloads. Through effectively managing NVRAM pages, the proposed algorithm extends the endurance of SSD by reducing the number of erase operations on NAND flash memory. Our experimental results show that our algorithm improved the buffer hit ratio by up to 116.51% and reduced the number of erase operations of NAND flash memory by up to 56.66%.

Bit Flip Reduction Schemes to Improve PCM Lifetime: A Survey

  • Han, Miseon;Han, Youngsun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.337-345
    • /
    • 2016
  • Recently, as the number of cores in computer systems has increased, the need for larger memory capacity has also increased. Unfortunately, dynamic random access memory (DRAM), popularly used as main memory for decades, now faces a scalability limitation. Phase change memory (PCM) is considered one of the strong alternatives to DRAM due to its advantages, such as high scalability, non-volatility, low idle power, and so on. However, since PCM suffers from short write endurance, direct use of PCM in main memory incurs a significant problem due to its short lifetime. To solve the lifetime limitation, many studies have focused on reducing the number of bit flips per write request. In this paper, we describe the PCM operating principles in detail and explore various bit flip reduction schemes. Also, we compare their performance in terms of bit reduction rate and lifetime improvement.

SSD Caching for Improving Performance of Virtualized IoT Gateway (가상화 환경 IoT 게이트웨이의 성능 향상을 위한 SSD 캐시 기법)

  • Lee, Dongwoo;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.954-960
    • /
    • 2015
  • It is important to improve the performance of storage in the home cloud environment within the virtualized IoT gateway since the performance of applications deeply depends on storage. Though SSD caching is applied in order to improve the storage, it is only used for read-cache due to the limitations of SSD such as poor write performance and small write endurance. However, it is important to improve performance of the write operation in the home cloud server, in order to improve the end-user experience. This paper propose a novel SSD caching which considers write-data as well as read-data. We validate the enhancement in the performance of random-write by transforming it to the sequential patterns.

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.