Jo, Myung-Hyun;Park, Jung-Up;Sul, Joo-Young;Baeg, Moon-Hong;Son, Jin-Hyun
The KIPS Transactions:PartD
/
v.13D
no.5
s.108
/
pp.671-682
/
2006
Until now, a variety of the standard and research activities are progressed in the business process management. However, since the common standard of the collaboration process language has not been determined, the research activities could not be well-systemized. We would present the guide-line to select and use the collaboration process language straightly through comparing different collaboration process languages (BPEL4WS, BPML, WSCI, WS-CDL, BPSS, etc). In this regard, we define the implicit and the explicit collaboration as the collaboration method in advance and present the result acquired according to compare and analyze the features of the collaboration process languages. First, the necessary elements the collaboration process languages have are extracted through the framework of the inter-organizational workflow proposed by Bernauer and the collaboration process modeling procedure(CPMP). Second, we analyze the properties of the collaboration process language based the essential elements. Finally, we show the complete example that the collaboration business process really reflects the characteristics of the collaboration business process languages
Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.4
/
pp.168-176
/
2015
Trends of integrating products and services lead to the emergence of Product-Service System (PSS). To implement and embody a PSS solution in new product development, a comprehensive design framework is allowed designers to facilitate the design factors of the PSS in complex business environments. A physical product, containing functionalities for services, is the role of medium between customers and a manufactures. Customers can access those metaphysical interfaces to utilize the product fully or expand its performances. The PSS is aiming to prolong its lifecycle while maintaining its expected quality. Since the quality can be represented as a measure which belongs to user's perspective, guaranteeing certain level of quality can be interpreted to sustaining customer satisfaction. The objective of this paper is to propose a PSS design framework to identify design factors for developing products and services by integrating object-oriented concepts and blueprinting in context of a business ecosystem. The proposed model is developed based on relationship products and services matching with their design factors. The products and the services are then brought together to form a PSS. Functions and processes can be categorized to identify the design factors in different levels using the object-oriented concepts. Objected-oriented concepts provide PSS analysis tools for describing a business process or a workflow process in the PSS. The blueprint is used to identify the relationships between the products functions and the service processes that are offered as part of a job. To demonstrate of the effectiveness of the proposed model, we use a case study involving a smart phone.
With the prospect that integrating creative AI in the fashion design field will become more visible, this study considered the case of creative fashion design development through Human-AI Co-creation (HAIC). Methodologically, this research encompasses a literature review and empirical investigations. In the literature review, the fashion design and creative HAIC processes, and the possibilities of integrating AI in fashion design were considered. In the empirical study, based on the case analysis of generating fashion design through HAIC, the HAIC type according to the role and interaction method, and characteristics of humans and AI was considered, and the HAIC process for fashion design was derived. The results of this study are summarized as follows. First, HAIC types in fashion design are divided into four types: AI-driven passive HAIC, human-driven passive HAIC, flexible interaction-based HAIC, and integrated interaction-based value creation HAIC. Second, the stages of the HAIC process for creative fashion design can be broadly divided into semantic data integration, visual ideation, design creation and expansion, design presentation, and design/manufacturing solution and UX platform creation. Third, in fashion design, HAIC contributes to human ability, enhancement of creativity, achievement of efficient workflow, and creation of new values. This research suggests that HAIC has the potential to revolutionize the fashion design industry by facilitating collaboration between humans and AI; consequently, enhancing creativity, and improving the efficiency of the design process. It also offers a framework for understanding the different types of HAIC and the stages involved in the creative fashion design process.
Megan E. Harrigan;Pamela A. Boremski;Bryan R. Collier;Allison N. Tegge;Jacob R. Gillen
Journal of Trauma and Injury
/
v.36
no.3
/
pp.231-241
/
2023
Purpose: Overtriage and undertriage rates are critical metrics in trauma, influenced by both trauma team activation (TTA) criteria and compliance with these criteria. Analysis of undertriaged patients at a level I trauma center revealed suboptimal compliance with existing criteria. This study assessed triage patterns after implementing compliance-focused process interventions. Methods: A physician-driven, free-text alert system was modified to a nonphysician, hospital dispatcher-guided system. The latter employed dropdown menus to maximize compliance with criteria. The preintervention period included patients who presented between May 12, 2020, and December 31, 2020. The postintervention period incorporated patients who presented from May 12, 2021, through December 31, 2021. We evaluated appropriate triage, overtriage, and undertriage using the Standardized Trauma Assessment Tool. Statistical analyses were conducted with an α level of 0.05. Results: The new system was associated with improved compliance with existing TTA criteria (from 70.3% to 79.3%, P=0.023) and decreased undertriage (from 6.0% to 3.2%, P=0.002) at the expense of increasing overtriage (from 46.6% to 57.4%, P<0.001), ultimately decreasing the appropriate triage rate (from 78.4% to 74.6%, P=0.007). Conclusions: This study assessed a workflow change designed to improve compliance with TTA criteria. Improved compliance decreased undertriage to below the target threshold of 5%, albeit at the expense of increased overtriage. The decrease in appropriate triage despite compliance improvements suggests that the current criteria at this institution are not adequately tailored to optimally balance the minimization of undertriage and overtriage. This finding underscores the importance of improved compliance in evaluating the efficacy of TTA criteria.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.12
/
pp.3330-3344
/
2023
This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.
Jesmin Akter;Bokjin Lee;Jai-Yeop Lee;Chang Hyuk Ahn;Nishimura Fumitake;ILHO KIM
Journal of Korean Society on Water Environment
/
v.40
no.1
/
pp.19-35
/
2024
The global pandemic, coronavirus disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the implementation of wastewater surveillance as a means to monitor the spread of SARS-CoV-2 prevalence in the community. The challenging aspect of establishing wastewater surveillance requires a well-equipped laboratory for wastewater sample analysis. According to previous studies, RT-PCR-based molecular tests are the most widely used and popular detection method worldwide. However, this approach for the detection or quantification of SARS-CoV-2 from wastewater demands a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically takes 6 to 8 hours to provide results for a few samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at regional laboratories. In some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories. The ongoing research and development of alternative and rapid technologies, namely RT-LAMP, ELISA, Biosensors, and GeneXpert, offer a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses. This study aims to discuss the effective regional rapid detection and quantification methods in community wastewater.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.1
/
pp.115-123
/
2024
The purpose of this study is to contribute to how the advantages of artificial intelligence (AI) services and the associated limitations can be simultaneously overcome, using the keywords AI and risk management. To achieve this, two cases were introduced: (1) presenting a risk monitoring process utilizing AI and (2) introducing an operational toolkit to minimize the emerging limitations in the development and operation of AI services. Through case analysis, the following implications are proposed. First, as AI services deeply influence our lives, the process are needed to minimize the emerging limitations. Second, for effective risk management monitoring using AI, priority should be given to obtaining suitable and reliable data. Third, to overcome the limitations arising in the development and operation of AI services, the application of a risk management process at each stage of the workflow, requiring continuous monitoring, is essential. This study is a research effort on approaches to minimize limitations provided by advancing artificial intelligence (AI). It can contribute to research on risk management in the future growth and development of the related market, examining ways to mitigate limitations posed by evolving AI technologies.
It has become possible for small scale laboratories to interpret large scale genomic DNA, thanks to the reduction of the sequencing cost by the development of next generation sequencing (NGS). De novo assembly is a method which creates a putative original sequence by reconstructing reads without using a reference sequence. There have been various study results on de novo assembly, however, it is still difficult to get the desired results even by using the same assembly procedures and the analysis tools which were suggested in the studies reported. This is mainly because there are no specific guidelines for the assembly procedures or know-hows for the use of such analysis tools. In this study, to resolve these problems, we introduce steps to finding whole genome of an unknown DNA via NGS technology and de novo assembly, while providing the pros and cons of the various analysis tools used in each step. We used 350Mbp of Toxocara canis DNA as an application case for the detailed explanations of each stated step. We also extend our works for prediction of protein-coding genes and their functions from the draft genome sequence by comparing its homology with reference sequences of other nematodes.
Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.
Journal of the Korea Society of Computer and Information
/
v.27
no.7
/
pp.1-7
/
2022
Recently, as the use of applications such as big data programs and machine learning programs that are driven while generating large amounts of data in the program itself becomes common, the existing main memory alone lacks memory, making it difficult to execute the program quickly. In particular, the need to derive results more quickly has emerged in a situation where it is necessary to analyze whether the entire sequence is genetically altered due to the outbreak of the coronavirus. As a result of measuring performance by applying large-capacity data to a computing system equipped with a self-developed memory pool MOCA host adapter instead of processing large-capacity data from an existing SSD, performance improved by 16% compared to the existing SSD system. In addition, in various other benchmark tests, IO performance was 92.8%, 80.6%, and 32.8% faster than SSD in computing systems equipped with memory pool MOCA host adapters such as SortSampleBam, ApplyBQSR, and GatherBamFiles by task of workflow. When analyzing large amounts of data, such as electrical dielectric pipeline analysis, it is judged that the measurement delay occurring at runtime can be reduced in the computing system equipped with the memory pool MOCA host adapter developed in this research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.