DOI QR코드

DOI QR Code

Basin modelling with a MATLAB-based program, BasinVis 2.0: A case study on the southern Vienna Basin, Austria

MATLAB 기반의 프로그램 BasinVis 2.0을 이용한 분지 모델링: 오스트리아 비엔나 분지의 남부 지역에 대한 사례 연구

  • Lee, Eun Young (Faculty of Earth System and Environmental Sciences, Chonnam National University) ;
  • Wagreich, Michael (Department of Geodynamics and Sedimentology, University of Vienna)
  • 이은영 (전남대학교 지구환경과학부) ;
  • Received : 2018.10.31
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

Basin analysis is a research field to understand the formation and evolution of sedimentary basins. This task requires various geoscientific datasets as well as numerical and graphical modelling techniques to synthesize results dimensionally in time and space. For basin analysis and modelling in a comprehensive workflow, BasinVis 1.0 was released as a MATLAB-based program in 2016, and recently the software has been extended to BasinVis 2.0, with new functions and revised user-interface. As a case study, this work analyses the southern Vienna Basin and visualizes the sedimentation setting and subsidence evolution to introduce the basin modelling functions of BasinVis 2.0. This is a preliminary study for a basin-scale modelling of the Vienna Basin, together with our previous studies using BasinVis 1.0. In the study area, during the late Early Miocene, sedimentation and subsidence are significant along strike-slip and en-echelon listric normal faults. From the Middle Miocene onwards, however, subsidence decreases abruptly over the area and this situation continues until the Late Miocene. This is related to the development of the pull-apart system and corresponds to the episodic tectonic subsidence in strike-slip basins. The subsidence of the Middle Miocene is confined mainly to areas along the strike-slip faults, while, from the late Middle Miocene, the depocenter shifts to a depression along the N-S trending listric normal faults. This corresponds to the regional paleostress regime transitioning from NE-SW trending transtension to E-W trending extension. This study applies various functions and techniques to this case study, and the modelled results demonstrate that BasinVis 2.0 is effective and applicable to the basin modelling.

분지 해석은 퇴적분지의 형성과 진화를 이해하기 위한 연구 분야로서 여러 종류의 지구과학 자료들을 종합적으로 분석해야 하며, 분지의 시공간적 발달을 입체적으로 구현하기 위해서는 모델링 기술이 적용된다. 분지해석과 모델링 연구를 위해 2016년 MATLAB 기반의 프로그램 BasinVis 1.0이 공개되었으며 최근에는 새로운 기능과 수정된 사용자 인터페이스를 포함한 BasinVis 2.0이 개발되었다. 이 연구에서는 BasinVis 2.0을 이용한 분지 모델링을 소개하기 위해 비엔나 분지의 남부에서 사례 연구를 수행하였다. 이 연구는 BasinVis 1.0을 이용한 비엔나 분지 중북부의 모델링 연구와 함께 앞으로 수행될 비엔나 분지 전지역의 모델링을 위한 예비 연구로서, 연구 지역의 마이오세 퇴적층과 침강 발달을 시공간적으로 구현하였다. 마이오세 초기의 후반 동안 퇴적과 침강은 북동-남서 방향의 주향이동 단층과 안행성 점완 정단층들을 따라 빠르게 나타난다. 하지만 마이오세 중기부터 후기까지 침강은 급격히 감소한다. 이는 인리형 시스템의 발달에 연관하며, 주향이동 분지의 단기간의 빠른 지구조 침강 패턴과 일치한다. 마이오세 중기의 침강은 주로 주향이동 단층을 따라서 나타나는 반면, 마이오세 중기 후반부터는 북-남 방향의 점완 정단층을 따라 저지대로 퇴적 중심지가 이동되었다. 이는 광역적 고응력장이 북동-남서 방향의 횡인장에서 동-서 방향의 인장으로 변화하는 것과 일치한다. 이 연구에서는 다양한 기능과 기법들이 사례 연구에 적용되었으며, 모델링 결과는 BasinVis 2.0이 분지 모델링 연구에 효과적으로 적용 가능함을 보여준다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Allen, P.A. and Allen, J.R., 2013, Basin Analysis: Principles and Application to Petroleum Play Assessment, 3rd ed. Wiley-Blackwell, Oxford, 642 p.
  2. Arzmuller, G., Buchta, S., Ralbovský, E. and Wessely, G., 2006, The Vienna Basin. In: Golonka, J. and Picha, F.J. (eds.), AAPG Memoir 84: The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. AAPG, Tulsa, 191-204.
  3. Athy, L.F., 1930, Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1-24.
  4. Beidinger, A. and Decker, K., 2011, 3D geometry and kinematics of the Lassee flower structure: Implications for segmentation and seismotectonics of the Vienna Basin strike-slip fault, Austria. Tectonophysics, 499, 22-40. https://doi.org/10.1016/j.tecto.2010.11.006
  5. Beidinger, A. and Decker, K., 2014, Quantifying Early Miocene in-sequence and out-of-sequence thrusting at the Alpine-Carpathian junction. Tectonics, 33, 222-252. https://doi.org/10.1002/2012TC003250
  6. Bond, G.C. and Kominz, M.A., 1984, Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian rocky mountains: implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin, 95, 155-173. https://doi.org/10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO;2
  7. Cressie, N., 1988, Spatial prediction and ordinary kriging. Mathematical Geology, 20, 405-421. https://doi.org/10.1007/BF00892986
  8. Cressie, N., 1993, Spatial prediction and kriging. In: Cressie, N. (eds.), Statistics for spatial data. Wiley, New York, 105-211.
  9. Csontos, L., Nagymarosy, A., Horvath, F. and Kovac, M., 1992, Tertiary evolution of the Intra-Carpathian area:a model. Tectonophysics, 208, 221-241. https://doi.org/10.1016/0040-1951(92)90346-8
  10. Decker, K., 1996, Miocene tectonics at the Alpine-Carpathian junction and the evolution of the Vienna Basin. Mitteilungen der Gesellschaft der Geologie- und Bergbaustudenten, 41, 33-44.
  11. Decker, K. and Peresson, H., 1996, Tertiary kinematics in the Alpine-Carpathian-Pannonian system: links between thrusting, transform faulting und crustal extension. In:Wessely, G. and Liebl, W. (eds.), EAGE Special Publication 5: Oil and Gas in Alpidic Thrustbelts and Basins of Central and Eastern Europe. The Geological Society, London, 69-77.
  12. Decker, K., Peresson, H. and Hinsch, R., 2005, Active tectonics and Quaternary basin formation along the Vienna Basin Transform fault. Quaternary Science Reviews, 24, 307-322.
  13. Einsele, G., 2000, Sedimentary basins. Evolution, facies, and sediment budget. Springer, Berlin, 792 p.
  14. Fodor, L., 1995, From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction. Tectonophysics, 242, 151-182. https://doi.org/10.1016/0040-1951(94)00158-6
  15. Gardner, G.H.F., Gardner, L.W. and Gregory, A.R., 1974, Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics, 39, 770-780. https://doi.org/10.1190/1.1440465
  16. Haq, B.U., Hardenbol, J. and Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156-1167. https://doi.org/10.1126/science.235.4793.1156
  17. Harzhauser, M., Mandic, O., Kranner, M., Lukeneder, P., Kern, A.K., Gross, M., Carnevale, G. and Jawecki, C., 2018, The Sarmatian/Pannonian boundary at the western margin of the Vienna Basin (City of Vienna, Austria). Austrian Journal of Earth Sciences, 111, 1-26. https://doi.org/10.17738/ajes.2018.0001
  18. Harzhauser, M., Theobalt, D., Strauss, P., Mandic, O. and Piller, W.E., in press, Seismic-based lower and middle Miocene stratigraphy in the northwestern Vienna Basin (Austria). Newsletters on Stratigraphy.
  19. Hinsch, R., Decker, K. and Peresson, H., 2005, 3-D seismic interpretation and structural modeling in the Vienna Basin: implications for Miocene to recent kinematics. Austrian Journal of Earth Sciences, 97, 38-50.
  20. Hohenegger, J., Coric, S. and Wagreich, M., 2014, Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geologica Carpathica, 65, 55-66. https://doi.org/10.2478/geoca-2014-0004
  21. Holzel, M., 2009, Quantification of tectonic movement in the Vienna Basin. Ph.D. thesis, University of Vienna, Vienna, Austria, 136 p.
  22. Holzel, M., Decker, K., Zamolyi, A., Strauss, P. and Wagreich, M., 2010, Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology, 27, 666-681. https://doi.org/10.1016/j.marpetgeo.2009.10.005
  23. Holzel, M., Wagreich, M., Faber, R. and Strauss, P., 2008, Regional subsidence analysis in the Vienna Basin (Austria). Austrian Journal of Earth Sciences, 101, 88-98.
  24. Horvath, F., 1993, Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226, 333-357. https://doi.org/10.1016/0040-1951(93)90126-5
  25. Huismans, R.S., Podladchikov, Y.Y. and Cloetingh, S., 2001, Dynamic modelling of the transition from passive to active rifting, application to the Pannonian Basin. Tectonics, 20, 1021-1039. https://doi.org/10.1029/2001TC900010
  26. Jiricek, R. and Seifert, P., 1990, Paleogeography of the Neogene in the Vienna basin and the adjacent part of the foredeep. In: Minarikova, D. and Lobitzer, H. (eds.), Thirty Years of Geological Cooperation between Austria and Czechoslovakia. Geological Survey, Prague, 89-105.
  27. Kovac, M., Barath, I., Harzhauser, M., Hlavaty, I. and Hudackova, N., 2004, Miocene depositional systems and sequence stratigraphy of the Vienna Basin. CFS Courier Forschungsinstitut Senckenberg, 246, 187-212.
  28. Lankreijer, A., Kovac, M., Cloetingh, S., Pitoňak, P., Hloska, P. and Biermann, C., 1995, Quantitative subsidence analysis and forward modelling of the Vienna and Danube basins: thin-skinned versus thickskinned extension. Tectonophysics, 252, 433-451. https://doi.org/10.1016/0040-1951(95)00099-2
  29. Lee, E.Y., Novotny, J. and Wagreich, M., 2016, BasinVis 1.0: A MATLAB(R)-based program for sedimentary basin subsidence analysis and visualization. Computers & Geosciences, 91, 119-127. https://doi.org/10.1016/j.cageo.2016.03.013
  30. Lee, E.Y., Novotny, J. and Wagreich, M., 2019, Subsidence analysis and visualization for sedimentary basin analysis and modelling. Springer, Cham, 56 p.
  31. Lee, E.Y. and Wagreich, M., 2016, 3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene). Austrian Journal of Earth Sciences, 109, 241-251.
  32. Lee, E.Y. and Wagreich, M., 2017, Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences, 106, 687-705. https://doi.org/10.1007/s00531-016-1329-9
  33. Leeder, M., 2011, Sedimentology and sedimentary basins:from turbulence to tectonics. Wiley, Chichester, 784 p.
  34. Li, J. and Heap, A., 2008, A review of spatial interpolation methods for environmental scientists. Geoscience Australia Record 2008/23, Canberra, 137 p.
  35. Mann, P., Hempton, M.R., Bradley, D.C. and Burke, K., 1983, Development of pull-apart basins. Journal of Geology, 91, 529-554. https://doi.org/10.1086/628803
  36. Miall, A.D., 2000, Principles of sedimentary basin analysis. Springer, Berlin, 616 p.
  37. Ori, G.G. and Friend, P.F., 1984, Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475-478. https://doi.org/10.1130/0091-7613(1984)12<475:SBFACP>2.0.CO;2
  38. Peresson, H. and Decker, K., 1997a, Far-field effects of Late Miocene subduction in the Eastern Carpatians:E-W compression and inversion of structures in the Alpine-Carpathian-Pannonian region. Tectonics, 16, 38-56. https://doi.org/10.1029/96TC02730
  39. Peresson, H. and Decker, K., 1997b, The Tertiary dynamics of the northern Eastern Alps (Austria): changing palaeostresses in a collisional plate boundary. Tectonophysics, 272, 125-157. https://doi.org/10.1016/S0040-1951(96)00255-7
  40. Piller, W.E., Harzhauser, M. and Mandic, O., 2007, Miocene Central Paratethys stratigraphy - current status and future directions. Stratigraphy, 4, 151-168.
  41. Plasienka, D., Grecula, P., Putis, M., Kovac, M. and Hovorka, D., 1997, Evolution and structure of the Western Carpathians: an overview. In: Grecula, P., Hovorka, D. and Putis, M. (eds.), Geological evolution of the Western Carpathians. Mineralia Slovaca - Monograph, Bratislava, 1-24.
  42. Ratschbacher, L., Frisch, W. and Linzer, H.-G., 1991a, Lateral extrusion in the eastern Alps, part II: structural analysis. Tectonics, 10, 257-271. https://doi.org/10.1029/90TC02623
  43. Ratschbacher, L., Merle, O., Davy, P. and Cobbold, P., 1991b, Lateral extrusion in the eastern Alps, part I:boundary conditions and experiments scaled for gravity. Tectonics, 10, 245-256. https://doi.org/10.1029/90TC02622
  44. Royden, L.H., 1985, The Vienna Basin: A thin-skinned pull-apart basin. In: Biddle, K.T. and Christie-Blick, N. (eds.), SEPM Special Publication 37: Strike-slip deformation, Basin formation and Sedimentation. SEPM, Tulsa, 319-338.
  45. Royden, L.H., 1988, Late Cenozoic tectonics of the Pannonian basin system. In: Royden, L.H. and Horvath, F. (eds.), AAPG Memoir 45: The Pannonian Basin. A study in Basin evolution. AAPG, Tulsa, 27-48.
  46. Royden, L.H., Horvath, F., Nagymarosy, A. and Stegena, L., 1983a, Evolution of the Pannonian Basin System:2. Subsidence and thermal history. Tectonics, 2, 91-137. https://doi.org/10.1029/TC002i001p00091
  47. Royden, L.H., Horvath, F. and Rumpler, J., 1983b, Evolution of the Pannonian Basin System: 1. Tectonics. Tectonics, 2, 63-90. https://doi.org/10.1029/TC002i001p00063
  48. Salcher, B.C., Meurers, B., Smit, J., Decker, K., Hӧlzel, M. and Wagreich, M., 2012, Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives. Tectonics, 31, TC3004, doi:10.1029/2011TC002979.
  49. Sauer, R., Seifert, P. and Wessely, G., 1992, Part I: Outline of Sedimentation, Tectonic Framework and Hydrocarbon Occurrence in Eastern Lower Austria. Mitteilungen der Osterreichischen Geologischen Gesellschaft, 85, 5-96.
  50. Sclater, J.G. and Christie, P.A.F., 1980, Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin. Journal of Geophysical Research, 85, 3711-3739. https://doi.org/10.1029/JB085iB07p03711
  51. Steckler, M.S. and Watts, A.B., 1978, Subsidence of the Atlantic-type continental margin off New York. Earth and Planetary Science Letters, 41, 1-13. https://doi.org/10.1016/0012-821X(78)90036-5
  52. Steininger, F.F. and Wessely, G., 1999, From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene Stratigraphy, Paleogeography and Palaeobiogeography of the circum-Mediterranean region and the Oligocene to Neogene Basin evolution in Austria. Mitteilungen der Osterreichischen Geologischen Gesellschaft, 92, 95-116.
  53. Strauss, P., Harzhauser, M., Hinsch, R. and Wagreich, M., 2006, Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin) - A 3D seismic based integrated approach. Geologica Carpathica, 57, 185-197.
  54. Wagreich, M. and Schmid, H.P., 2002, Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova, 14, 163-168. https://doi.org/10.1046/j.1365-3121.2002.00404.x
  55. Watts, A.B. and Ryan, W.B.F., 1976, Flexure of the lithosphere and continental margin basins. Tectonophysics, 36, 25-44. https://doi.org/10.1016/0040-1951(76)90004-4
  56. Watts, A.B. and Steckler, M.S., 1979, Subsidence and eustasy at the continental margin of Eastern North America. AGU, Maurice Ewing Symposium Series, 3, 218-234.
  57. Wessely, G., Kroll, A., Jiřicek, R. and Nemec, F., 1993, Wiener Becken und angrenzende Gebiete-Geologische Einheiten des praneogenen Beckenuntergrundes. Geologische Themenkarte der Republik Osterreich 1:200.000, Geologische Bundesanstalt, Vienna.
  58. Xie, X. and Heller, P.L., 2009, Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121, 55-64.

Cited by

  1. Numerical or analog modeling study vol.54, pp.6, 2018, https://doi.org/10.14770/jgsk.2018.54.6.585
  2. Compaction trend estimation and applications to sedimentary basin reconstruction (BasinVis 2.0) vol.5, pp.None, 2018, https://doi.org/10.1016/j.acags.2019.100015