• 제목/요약/키워드: word selection

검색결과 177건 처리시간 0.026초

키워드 네트워크 분석을 통한 「패션비즈니스」 연구 동향 -패션마케팅 및 디자인 분야를 중심으로- (Research Trends in Journal of Fashion Business -A Social Network Analysis of Keywords in Fashion Marketing and Design Area-)

  • 이미영;이정민
    • 패션비즈니스
    • /
    • 제23권3호
    • /
    • pp.51-66
    • /
    • 2019
  • The aim of this study is to identify research trends of "Journal of Fashion Business" by analyzing the keyword network of the paper published between 2006 and 2017. The papers selected for analysis in the study were 287 fashion design articles and 281 fashion marketing articles published between February 2006 and December 2017 and titles, volumes, publishing years, authors, keywords, and abstracts of each paper were collected for data analysis. The research was carried out through selection, collection of article data, keyword extraction and coding, keywords refinement, formation of network matrix, and analysis and visualization process. First, based on the title of the paper used in the analysis, the fashion design/aesthetics, marketing/social psychology, clothing materials, clothing composition, and other fields were classified. Research analysis used the Netminer 4 (Ver.4.3.2) program. Results indicated showed that the intellectual structure of the "Fashion Business" research paper showed key word changes over time, and the degree centrality and between centrality of the keywords.

Analysis of the supportive care needs of the parents of preterm children in South Korea using big data text-mining: Topic modeling

  • Park, Ji Hyeon;Lee, Hanna;Cho, Haeryun
    • Child Health Nursing Research
    • /
    • 제27권1호
    • /
    • pp.34-42
    • /
    • 2021
  • Purpose: The purpose of this study was to identify the supportive care needs of parents of preterm children in South Korea using text data from a portal site. Methods: In total, 628 online newspaper articles and 1,966 social network service posts published between January 1 and December 31, 2019 were analyzed. The procedures in this study were conducted in the following order: keyword selection, data collection, morpheme analysis, keyword analysis, and topic modeling. Results: The term "yirundung-yi", which is a native Korean word referring to premature infants, was confirmed to be a useful term for parents. The following four topics were identified as the supportive care needs of parents of preterm children: 1) a vague fear of caring for a baby upon imminent neonatal intensive care unit discharge, 2) real-world difficulties encountered while caring for preterm children, 3) concerns about growth and development problems, and 4) anxiety about possible complications. Conclusion: Supportive care interventions for parents of preterm children should include general parenting methods for babies. A team composed of multidisciplinary experts must support the individual growth and development of preterm children and manage the complications of prematurity using highly accessible media.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권12호
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

ANALYSIS OF ENVIRONMENT-FRIENDLY BUILDING MATERIALS FOR AGED HOUSING REMODELING

  • Ki-Hyon Kim;Kyung-Rai Kim;Hee-Sung Cha
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.311-317
    • /
    • 2007
  • "Environmentally Sound and Sustainable Development (ESSD)" is a key word in recent years. The construction industry, have put a great influence on ergonomic and sustainable environment. Recently, "green building certifications", such as Indoor Air Quality (IAQ) and eco-friendly material regulation have been established. With this regard, new construction and aged-housing remodeling projects are required to meet these certification criteria. Multi-housing residents have great concern on eco-product, since many cases are reported that Sick Building Syndrome is caused by toxic substance from building materials. Aged-housing remodeling project is very unique in that building residents are selected prior to design phase. Therefore, the analysis of resident's need for building materials in aged-housing remodeling is relatively easy compared to new building construction. As such, it is very important to analyze their preferences for eco-friendly materials prior to project execution. The purpose of this study is to find the needs of residents and priority of their needs. Based on their needs and priority, this paper provides a new strategy in using environment-friendly materials and maximizing their satisfaction level when aged housing remodeling is constructed. In addition, this paper provide new criteria in selecting new developed environmental materials in remodeling projects for the purpose of improving the safety and health level in construction industry.

  • PDF

기억용량 절약과 순회방식 선택이 가능한 디지털 필터의 구성에 관한 연구 (A Study on the Implementation of Digital Filters with Reduced Memory Space and Dual Impulse Response Types)

  • 박인정;이태원
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.950-956
    • /
    • 1986
  • In this paper, a direct addressing mode of a microprocessor is introduced to save memory capacity, and also a dedicated digital filter is constructed to speed up the filter processing and to enable an easy selection of the impulse response types. A theoretical analysis has been conducted on the errors caused by the finite word klength, rounding-off and multiplication procedures. The digital filter designed by the proposed method is made into a module which can function as a 7th-order recursive or a 14-order nonrecursive type with a simples witch operation. The proposed filter is implemented on a printed-circuit board. The frequency characteristics of this filter can be controlled by the multiplication values stored in ROMs. A low-pass, a high-pass and a band-pass filter have been designed and their frequency characteristics are verified by actual measurements. For a order higher filer, two filter modules have been cascaded into an integrated filter of 23rd-order non-recursive low-pass type and a 12th-order recursive multiband type. Their frequency characteirstics have been found to agree with the theory.

  • PDF

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • 여성건강간호학회지
    • /
    • 제29권2호
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.

The Impact of Importance of Online Platform Food Delivery Selection Attributes on Satisfaction and Repurchase Intention

  • Bo-Kyung SEO;Seunghyeon LEE;Seong Soo CHA
    • 식품보건융합연구
    • /
    • 제10권4호
    • /
    • pp.9-19
    • /
    • 2024
  • This qualitative study explores the impact of online food delivery platform attributes on customer satisfaction and repurchase intentions. Employing a phenomenological approach, we conducted in-depth interviews and focus group discussions with 15 participants to gain rich insights into user experiences. Thematic analysis revealed key factors influencing satisfaction and loyalty: service quality dimensions (efficiency, reliability, fulfillment, privacy), expectation disconfirmation, perceived usefulness and ease of use, multi-level customer value, relationship quality, electronic word-of-mouth, value co-creation, and phased loyalty formation. Our findings extend customer behavior theory in digital platforms, offering a comprehensive framework for understanding the complex mechanisms underlying user satisfaction and repurchase decisions. The study provides valuable implications for platform operators, highlighting the importance of exceeding customer expectations, enhancing user experience, building trust, leveraging user-generated content, and fostering co-creation processes. Methodologically, we demonstrate the efficacy of qualitative approaches in uncovering nuanced insights in digital service contexts. While acknowledging limitations in generalizability, this research establishes a solid foundation for future investigations into the rapidly evolving domain of online food delivery services. The integrated theoretical approach offers a robust model for analyzing customer behavior in emerging digital service environments, contributing significantly to both academic understanding and practical application in the field of digital service provision and platform management.

이태리 레스토랑의 메뉴선택 속성요인이 만족도에 미치는 영향 연구 (A Study on the Menu Selection Factors of an Italian Restaurant on Satisfaction)

  • 민계홍
    • 한국조리학회지
    • /
    • 제19권4호
    • /
    • pp.243-255
    • /
    • 2013
  • 본 연구의 목적은 전주지역 이태리 레스토랑을 대상으로 메뉴 주문시 선택 속성에 관한 중요 내용을 알아보고, 이태리 레스토랑의 이용 형태와 각 메뉴 구성별 좋아하는 음식이 무엇인지 분석을 하는데 있다. 연구 결과의 내용을 요약하면 다음과 같다. 첫째, 이태리 레스토랑 메뉴 주문시 선택 속성에 관한 중요도에서는 요인분석에서 건강관리 요인, 서비스관리 요인, 음식관리 요인, 메뉴관리 요인으로 명명하였는데, 만족도 검증 결과 건강관리 요인에서 유의한 차이가 있는 것으로 나타났다. 둘째, 이태리 레스토랑 이용형태에서는 이태리 음식의 인지도에서 긍정적으로 나타났으며, 방문 횟수는 한 달에 1회- 2회, 주 동반인은 가족, 이용 목적은 식사를 하기 위해서, 음식에 대한 정보는 구전을 통해서 정보를 얻은 것으로 나타났다. 셋째, 이태리 메뉴 중에서 각 메뉴별 좋아하는 음식으로는 안티파스토에서 모짜렐라 치즈요리, 수프에서는 아스파라거스 크림 수프, 파스타에서는 크림소스의 스파게티 까르보나라, 피자에서는 모짜렐라 치즈와 살라미, 검정 올리브, 토마토 소스를 얹어 구운 피자, 샐러드는 모짜렐라 치즈 토마토 샐러드, 주요리 중에서 육류는 쇠고기 안심 스테이크, 생선요리는 광어요리, 후식에서는 신선한 과일과 티라미슈를 좋아하는 음식으로 나타났다. 향후 연구에서는 고객들이 이태리 레스토랑을 방문했을때 메뉴 선택시 중요하게 이루어지는 내용을 조사대상자 표본 집단별로 분석하는 다양한 연구가 진행이 되어야 하겠다.

  • PDF

단어선택과 SMOTE 알고리즘을 이용한 불균형 텍스트 데이터의 소수 범주 예측성능 향상 기법 (Improving minority prediction performance of support vector machine for imbalanced text data via feature selection and SMOTE)

  • 김종찬;장성준;손원
    • 응용통계연구
    • /
    • 제37권4호
    • /
    • pp.395-410
    • /
    • 2024
  • 텍스트 데이터는 일반적으로 많은 다양한 단어들로 구성되어 있다. 평범한 텍스트 데이터의 경우에도 수만 개의 서로 다른 단어들을 포함하고 있는 경우를 흔히 관찰할 수 있으며 방대한 양의 텍스트 데이터에서는 수십만 개에 이르는 고유한 단어들이 포함되어 있는 경우도 있다. 텍스트 데이터를 전처리하여 문서-단어 행렬을 만드는 경우 고유한 단어를 하나의 변수로 간주하게 되는데 이렇게 많은 단어들을 각각 하나의 변수로 간주한다면 텍스트 데이터는 매우 많은 변수를 가진 데이터로 볼 수 있다. 한편, 텍스트 데이터의 분류 문제에서는 분류의 목표변수가 되는 범주의 비중에 큰 차이가 나는 불균형 데이터 문제를 자주 접하게 된다. 이렇게 범주의 비중에 큰 차이가 있는 불균형 데이터의 경우에는 일반적인 분류모형의 성능이 크게 저하될 수 있다는 사실이 잘 알려져 있다. 따라서 불균형 데이터에서의 분류 성능을 개선하기 위해 소수집단의 관측값들을 합성하여 소수집단에 포함되는 새로운 관측값을 생성하는 합성과표집기법(synthetic over-sampling technique; SMOTE) 등의 알고리즘을 적용할 수 있다. SMOTE는 k-최근접이웃(k-nearset neighbor; kNN) 알고리즘을 이용하여 새로운 합성 데이터를 생성하는데 텍스트 데이터와 같이 많은 변수를 가진 데이터의 경우에는 오차가 누적되어 kNN의 성능에 문제가 생길 수 있다. 이 논문에서는 변수선택을 통해 변수가 많은 불균형 텍스트 데이터를 오차가 축소된 공간에 표현하고 이 공간에서 새로운 합성 관측값을 생성하여 불균형 텍스트 데이터에서 소수 범주에 대한 SVM 분류모형의 예측 성능을 향상시키는 방법을 제안한다.

한국어 수분류사 어휘의미망 KorLexClas 1.5 (KorLexClas 1.5: A Lexical Semantic Network for Korean Numeral Classifiers)

  • 황순희;권혁철;윤애선
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권1호
    • /
    • pp.60-73
    • /
    • 2010
  • 본 연구의 목적은 한국어 수분류사 체계를 설정하고, 수분류사와 공기명사 간 의미관계 정보를 제공하는 한국어 수분류사 어휘의미망 "KorLexClas 1.5"의 정보구조와 구축방식을 소개하는 데 있다. KorLex 명사, 동사, 형용사, 부사가 영어 워드넷(Princeton WordNet)을 기반으로 참고구축 방식으로 개발된 것에 비해, KorLexClas 1.0버전과 이를 확장한 1.5버전은 직접구축 방식으로 개발하였다는 점에서, 수분류사의 계층구조와 언어단위 간 의미관계 설정은 매우 방대한 시간과 정교한 구축 방식을 요구한다. 따라서 작업의 효율성을 기함과 동시에, 구축된 어휘의미망의 신뢰성 및 확장성을 높이기 위해, (1) 다양한 기구축 언어자원을 활용하되 상호 검증하는 절차를 거치고, (2) 부분문장 분석방법을 이용하여, 수분류사 및 공기명사 목록을 확장하며, (3) 언어학적 준거를 기준으로 수분류사의 계층구조를 설정하고, (4) 수분류사와 공기명사 간 의미관계 정보를 제공하되 확장성을 확보하기 위해, KorLexNoun 1.5에 '최하위 공통상 위노드(LUB : Least Upper Bound)'를 설정하는 방식을 택한다. 이러한 특성을 가진 KorLexClas 1.5는 기계번역을 비롯한 한국어정보처리의 제 분야에 응용될 수 있다.