• Title/Summary/Keyword: word cloud analysis

Search Result 151, Processing Time 0.021 seconds

A Study on Research Trends in Metaverse Platform Using Big Data Analysis (빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석)

  • Hong, Jin-Wook;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2022
  • As the non-face-to-face situation continues for a long time due to COVID-19, the underlying technologies of the 4th industrial revolution such as IOT, AR, VR, and big data are affecting the metaverse platform overall. Such changes in the external environment such as society and culture can affect the development of academics, and it is very important to systematically organize existing achievements in preparation for changes. The Korea Educational Research Information Service (RISS) collected data including the 'metaverse platform' in the keyword and used the text mining technique, one of the big data analysis. The collected data were analyzed for word cloud frequency, connection strength between keywords, and semantic network analysis to examine the trends of metaverse platform research. As a result of the study, keywords appeared in the order of 'use', 'digital', 'technology', and 'education' in word cloud analysis. As a result of analyzing the connection strength (N-gram) between keywords, 'Edue→Tech' showed the highest connection strength and a total of three clusters of word chain clusters were derived. Detailed research areas were classified into five areas, including 'digital technology'. Considering the analysis results comprehensively, It seems necessary to discover and discuss more active research topics from the long-term perspective of developing a metaverse platform.

Current Status and Future Prospects of Endangered Species Restoration Projects for Freshwater Fishes, Amphibians, and Reptiles in South Korea

  • Yoon, Ju-Duk;Kwon, Kwanik;Yoo, Jeongwoo;Yoo, Nakyung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.247-258
    • /
    • 2021
  • To understand restoration and conservation projects conducted in Korea for endangered freshwater fishes and amphibians/reptiles, information about Request for Protocols-related studies on restoration, breeding, and release were collected. Trends of studies were visualized via word clouds and VOSviewer program using a text mining technique. Analysis of restoration projects for endangered freshwater fishes elucidated that most research studies conducted to date were focused on genetics and release through captive breeding that could be classified into captive breeding and habitat environments. As for research projects related to amphibians/reptiles, monitoring projects had the highest number, followed by genetic, translocation, and monitoring studies. In addition, restoration projects for amphibians/reptiles included a large number of post-capture translocation projects. Thus, many projects were confirmed by public institutions rather than by the Ministry of Environment. Network analysis revealed that it was largely classified into capture, translocation, and Kaloula borealis. Based on these results, limitations, achievements, and challenges associated with projects conducted thus far are highlighted. Research directions for future restoration and conservation of endangered freshwater fishes and amphibians/reptiles in South Korea are also suggested.

Adoption Process of Chinese Students to Korean Food Based on Residence periods (중국유학생의 거주기간에 따른 한국음식 확산)

  • Han, Kyung Soo;Min, Ji Eun
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.4
    • /
    • pp.411-423
    • /
    • 2019
  • This study conducted qualitative research through in-depth interviews on the diffusion process of Korean food in accordance with the length of residence of Chinese students in Korea. As the analysis method, the qualitative analysis method such as NVivo12.0 was used, and the analysis was performed through word frequency, word cloud, and coding matrix. The images of taste of Korean food were revealed as 'Spicy', 'Sweet', and 'Light taste' by both short-term Chinese residents and long-term Chinese residents. The long-term Chinese residents showed their dissatisfaction with the institutional food, and they also pointed out the importance of the matter of cooking for quick adaptation to life in Korea. The long-term Chinese residents also thought of Korean food as 'High-fiber food', and this was influenced by the 'Less-oil' cooking method of Korean food, which is different from the cooking method of Chinese food. The length of residence was used as a main variable of this study, and it was one of the factors having positive effects on the diffusion of Korean food and acculturation. It would be difficult to generalize the results because this study used the convenience sampling method and snowball sampling.

An Investigation on the Periodical Transition of News related to North Korea using Text Mining (텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰)

  • Park, Chul-Soo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.63-88
    • /
    • 2019
  • The goal of this paper is to investigate changes in North Korea's domestic and foreign policies through automated text analysis over North Korea represented in South Korean mass media. Based on that data, we then analyze the status of text mining research, using a text mining technique to find the topics, methods, and trends of text mining research. We also investigate the characteristics and method of analysis of the text mining techniques, confirmed by analysis of the data. In this study, R program was used to apply the text mining technique. R program is free software for statistical computing and graphics. Also, Text mining methods allow to highlight the most frequently used keywords in a paragraph of texts. One can create a word cloud, also referred as text cloud or tag cloud. This study proposes a procedure to find meaningful tendencies based on a combination of word cloud, and co-occurrence networks. This study aims to more objectively explore the images of North Korea represented in South Korean newspapers by quantitatively reviewing the patterns of language use related to North Korea from 2016. 11. 1 to 2019. 5. 23 newspaper big data. In this study, we divided into three periods considering recent inter - Korean relations. Before January 1, 2018, it was set as a Before Phase of Peace Building. From January 1, 2018 to February 24, 2019, we have set up a Peace Building Phase. The New Year's message of Kim Jong-un and the Olympics of Pyeong Chang formed an atmosphere of peace on the Korean peninsula. After the Hanoi Pease summit, the third period was the silence of the relationship between North Korea and the United States. Therefore, it was called Depression Phase of Peace Building. This study analyzes news articles related to North Korea of the Korea Press Foundation database(www.bigkinds.or.kr) through text mining, to investigate characteristics of the Kim Jong-un regime's South Korea policy and unification discourse. The main results of this study show that trends in the North Korean national policy agenda can be discovered based on clustering and visualization algorithms. In particular, it examines the changes in the international circumstances, domestic conflicts, the living conditions of North Korea, the South's Aid project for the North, the conflicts of the two Koreas, North Korean nuclear issue, and the North Korean refugee problem through the co-occurrence word analysis. It also offers an analysis of South Korean mentality toward North Korea in terms of the semantic prosody. In the Before Phase of Peace Building, the results of the analysis showed the order of 'Missiles', 'North Korea Nuclear', 'Diplomacy', 'Unification', and ' South-North Korean'. The results of Peace Building Phase are extracted the order of 'Panmunjom', 'Unification', 'North Korea Nuclear', 'Diplomacy', and 'Military'. The results of Depression Phase of Peace Building derived the order of 'North Korea Nuclear', 'North and South Korea', 'Missile', 'State Department', and 'International'. There are 16 words adopted in all three periods. The order is as follows: 'missile', 'North Korea Nuclear', 'Diplomacy', 'Unification', 'North and South Korea', 'Military', 'Kaesong Industrial Complex', 'Defense', 'Sanctions', 'Denuclearization', 'Peace', 'Exchange and Cooperation', and 'South Korea'. We expect that the results of this study will contribute to analyze the trends of news content of North Korea associated with North Korea's provocations. And future research on North Korean trends will be conducted based on the results of this study. We will continue to study the model development for North Korea risk measurement that can anticipate and respond to North Korea's behavior in advance. We expect that the text mining analysis method and the scientific data analysis technique will be applied to North Korea and unification research field. Through these academic studies, I hope to see a lot of studies that make important contributions to the nation.

A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea (연결망 분석을 활용한 우리나라 금연연구 동향분석)

  • An, Eun-Seong
    • Health Policy and Management
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.

Study of Mental Disorder Schizophrenia, based on Big Data

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • This study provides academic implications by considering trends of domestic research regarding therapy for Mental disorder schizophrenia and psychosocial. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 65 papers have been collected The result of this study is as follows. First, collected data were visualized through analysis of keywords by using word cloud method. Second, keywords such as intervention, schizophrenia, research, patients, program, effect, society, mind, ability, function were recorded with highest frequency resulted from keyword frequency analysis. Third, LDA (latent Dirichlet allocation) topic modeling result showed that classified into 3 keywords: patient, subjects, intervention of psychosocial, efficacy of interventions. Fourth, the social network analysis results derived connectivity, closeness centrality, betweennes centrality. In conclusion, this study presents significant results as it provided basic rehabilitation data for schizophrenia and psychosocial therapy through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of schizophrenia and psychosocial therapy through text mining and social network analysis.

An Analysis of School Life Sensibility of Students at Korea National College of Agriculture and Fisheries Using Unstructured Data Mining(1) (비정형 데이터 마이닝을 활용한 한국농수산대학 재학생의 학교생활 감성 분석(1))

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Song, C.Y.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.99-114
    • /
    • 2019
  • In this study we examined the preferences of eight college living factors for students at Korea National College of Agriculture and Fisheries(KNCAF). Analytical techniques of unstructured data used opinion mining and text mining techniques, and the analysis results of text mining were visualized as word cloud. The college life factors included eight topics that were closely related to students: 'my present', 'my 10 years later', 'friendship', 'college festival', 'student restaurant', 'college dormitory', 'KNCAF', and 'long-term field practice'. In the text submitted by the students, we have established a dictionary of positive words and negative words to evaluate the preference by classifying the emotions of positive and negative. As a result, KNCAF students showed more than 85% positive emotions about the theme of 'student restaurant' and 'friendship'. But students' positive feelings about 'long-term field practice' and 'college dormitory' showed the lowest satisfaction rate of not exceeding 60%. The rest of the topics showed satisfaction of 69.3~74.2%. The gender differences showed that the positive emotions of male students were high in the topics of 'my present', 'my 10 years later', 'friendship', 'college dormitory' and 'long-term field practice'. And those of female were high in 'college festival', 'student restaurant' and 'KNCAF'. In addition, using text mining technique, the main words of positive and negative words were extracted, and word cloud was created to visualize the results.

Exploring Perception on the Swimming Rating System

  • Hyo Rim KIM;Jae Woong KIM;Myung Seok SEO
    • Journal of Sport and Applied Science
    • /
    • v.7 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • Purpose: The purpose of the study is to analyze the perception of swimming rating system. Research design, data, and methodology: In this study, practitioners and leaders of Korean swimming federation were selected as the subjects of the study to institutionalize the grade of swimming. Data analysis was categorized according to word frequency after coding using the Nvivo 12.0 program, and words were visualized using the word cloud program. PASW/WIN 21.0 was employed to analyze demographic characteristics. Triangular verification and expert meetings were conducted three times to increase the validity of the study. In these meetings, the study excluded subjective interpretation and errors of the researcher. Results: First, as a result of analyzing the perception of practitioners before educational training, 16 words and the total frequency of words was 21 times. Second, as a result of analyzing the perception of practitioners after educational training, 22 words and a total of 25 frequencies were found. Third, as a result of analyzing the leader's perception before educational training, 32 words and the total frequency of words was 63 times. Fourth, as a result of analyzing the leader's perception after educational training, 41 words and a total of 72 frequencies were found. Conclusions: Findings indicated divers feelings and thoughts of practitioners and leaders of Korean swimming federations towards swimming rating system. Further implications were discussed.

A Case Study on the Development of New Brand Concept through Big Data Analysis for A Cosmetics Company (화장품 회사의 빅데이터분석을 통한 브랜드컨셉 개발 사례분석)

  • Lee, Jumin;Bang, Jounghae
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • This study introduces the case of a company that newly jumped into the competitive cosmetics market with a brand concept developed through big data analysis. Skin Reverse Lab, which possesses anti-aging material technology, launched a new brand in the skincare cosmetics market. Using a big data analysis program called Luminoso, SNS data was analyzed in four areas, which were consumer attitudes toward overall cosmetics, skincare products, competitors, and consumers' experiences of product use. The age groups and competitors were analyzed through the emotional analysis technique including context, which is the strength of Luminoso, and insights on consumers were derived through the related word analysis and word cloud techniques. Based on the analysis results, Logically Skin have won various awards in famous magazines and apps, and have been recognized as products that meet global trend standards. Besides, it has entered six countries including the United States and Hong Kong. The Logically Skin case is a case in which a new company entered the market with a new brand by deriving consumer insights only from external data, and it is significant as a case of applying AI-based sentiment analysis.

Film Trend Analysis Through OTT Movie Information (OTT 영화 정보를 통한 영화 트렌드 분석)

  • Kang Min Lee;Jai-Soon Baek;Sung-Jin Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.175-177
    • /
    • 2024
  • OTT(Over-The-Top) 플랫폼의 부상은 미디어 콘텐츠 소비 방식을 혁명적으로 변화시키고 있다. 본 논문은 Netflix, Amazon Prime Video, Disney+, Hulu 등 주요 OTT 플랫폼에 등록된 영화들을 IMDb 평점과 러닝타임, Rotten Tomatoes 지수를 중심으로 분석한다. 이를 통해 현재의 영화 시장 트렌드와 소비자 선택, 시장 전략에 중요한 정보를 제공하려 한다. 분석 결과, 플랫폼별로 제공하는 영화의 품질과 러닝타임이 다양하며, 소비자들이 선호하는 영화 테마를 시각적으로 파악할 수 있는 워드 클라우드를 포함한다. 이러한 결과는 OTT 플랫폼의 전략적 콘텐츠 제공과 소비자 행동 이해에 기여할 수 있는 중요한 통찰력을 제공한다.

  • PDF