• 제목/요약/키워드: wood resistance

검색결과 302건 처리시간 0.032초

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권4호
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Performance of Melamine-Urea-Formaldehyde Resin Adhesives at Various Melamine Contents for Bonding Glued Laminated Timber Under High Frequency Heating

  • Hong, Min-Kug;Park, Byung-Dae;Kim, Keon-Ho;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권4호
    • /
    • pp.409-418
    • /
    • 2017
  • This work attempted to manufacture glued-laminated timber (Glulam) bonded with melamine-urea-formaldehyde (MUF) resin adhesives at various melamine contents from 20% to 50% under high frequency (HF) heating for a very short time. Two preparation methods were employed to prepare MUF resin adhesives with different melamine contents: one-batch method of synthesizing MUF resins in a single batch, and two-batch method of mixing urea-formaldehyde (UF) resin with melamine-formaldehyde (MF) resin that had been synthesized separately. As the melamine content increased, the gelation time and peak temperature of MUF resins decreased. The adhesion performance of plywood showed that the one-batch MUF resin adhesive with 50% melamine content only satisfied the standard requirement of water resistance. Thus, the one-batch MUF resin adhesive with 50% melamine content was applied for bonding wood lamina from four softwood species such as Japanese larch, Korean red pine, Korean pine and Japanese cedar to manufacture Glulam under HF heating. All Glulam samples bonded with the one-batch MUF resin adhesives with 50% melamine content except those from Korean Red Pine satisfied the requirement in water soaking or boiling water delamination test as an exterior grade Glulam. The presence of rosin in Korean Red Pine was believed to be responsible for its poor adhesion. These results showed that the one-batch MUF resin adhesives with 50% melamine content provided acceptable water resistance with exterior grade Glulam manufactured under HF heating.

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

Evaluation Methods of Flame Retardants for Wooden Cultural Properties

  • Son, Dong Won;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.590-596
    • /
    • 2014
  • Wooden cultural heritages of Korea have been destroyed by fire in many cases. As a result, a number of methods to protect wooden cultural properties against fire were introduced. A way of protecting wooden cultural properties installations of fire equipments such as sprinkler, fire alarm system, or fire extinguisher. Another way of protecting wooden cultural properties is to treat them with flame retardants for their safety. Development of a very effective flame retardant with a good performance without affecting danchung and wood quality is required. At the same time, methods of evaluating flame retardant treated woods should be devised to assess their efficacy. In this study, combustion characteristics using cone-calorimeter, limit oxygen index, moisture absorption, iron corrosive and weathering were analyzed to evaluate the flame resistance efficacy and performance of flame retardants treated woods. The evaluation methods of flame retardants for wooden cultural heritage were suggested.

무기 폴리머 결합재를 사용한 목모 보드의 물리적 특성에 관한 실험적 연구 (An Experimental Study on the Physical Properties of Wood Wool Board Applied Inorganic Polymer Binder)

  • 최해영;박동철;양완희;이세현;송태협
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.853-856
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of the physical properties for wood wool ceramic board applied inorganic polymer binder. As the result of this experiment, what we could obtain better wood wool ceramic board's properties such as density, water contests, water resistance and band strength, was 0.46, $10{\sim}12%$, 1.9% and $40kgf/cm^2$. This result can be applicable to commercial wood wool ceramic board.

  • PDF

밀성박씨 경주 손곡문중 목판의 수종식별 (Wood Species Identification of Documentary Woodblocks of Songok Clan of the Milseong Park, Gyeongju, Korea)

  • 엄유정;박병대
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권3호
    • /
    • pp.270-277
    • /
    • 2018
  • 본 연구에서는 기록으로 남아있는 밀성박씨 경주 손곡문중의 박씨문헌록(朴氏文獻錄)과 지당실기(智堂實紀)의 인쇄에 사용된 목판의 수종을 식별하고자 수행되었다. 전체 282장의 목판 중 88장을 무작위로 선정하여 광학현미경으로 목재해부학적 특징을 비교분석한 결과, 7개의 목재수종이 식별되었다. 즉 가장 많이 사용된 수종은 서어나무로 39.8%를 차지하였고, 그 다음으로 돌배나무가 25.0%, 고로쇠나무가 15.9%, 산벚나무가 10.2%, 피나무가 3.4%, 감나무가 3.4%, 그리고 거제수나무가 2.3%가 사용된 것으로 조사되었다. 이 같은 결과는 일반적으로 목판인쇄에 사용된 목재수종의 범주에 속하는 것이다. 또 식별된 모든 수종들은 활엽수 산공재로 복잡한 한자를 새기기 쉽고 여러 번 인쇄를 하더라도 글자가 쉽게 닳지 않고 용이하게 구할 수 있는 목재수종이 사용된 것으로 판단된다.

톱밥과 왕겨로 제조된 세라믹의 전기적 성질과 원적외선 방사특성 (Electrical Properties and Far-infrared Ray Emission of Ceramics Manufactured with Sawdust and Rice Husk)

  • 오승원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권1호
    • /
    • pp.106-112
    • /
    • 2016
  • 농림 부산물인 톱밥과 왕겨를 이용하여 세라믹을 제조하고 페놀수지 함침율과 탄화 온도에 따른 전기적 성질 및 원적외선 방사특성을 조사하였다. 원적외선 방사율과 방사 에너지 값은 탄화온도가 증가함에 따라 감소하였으며, 수지함침율 60%, 탄화온도 $600^{\circ}C$일 때 원적외선 방사율은 0.930, 방사에너지는 $4.32{\times}10w/m^2$로 가장 높았다. 전기저항 값은 탄화온도가 증가함에 띠라 감소하여 $1200^{\circ}C$ 이상에서는 거의 도체에 가까운 성질을 보였다. 소비전력은 수지함침율이 높을수록 전기저항의 감소와 전류의 증가로 함께 증가하였다.

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

북미산 흑호두나무 Bi-Sn 용융합금 복합체의 제조와 특성 (Manufacturing and Properties of Bi-Sn Impregnated Wood Composites of Juglans nigra)

  • 강석구;박계신;이호;서인수;이종신;이화형
    • 한국가구학회지
    • /
    • 제22권1호
    • /
    • pp.54-62
    • /
    • 2011
  • The metalized wood composites with natural grain of imported Juglans nigra, which was impregnated with low melting alloy were manufactured and evaluated in this study. And the proper manufacturing conditions was also investigated in this study. The low melting alloy with bismuth (Bi) and tin (Sn) which are harmless to humans, was applied to this new composites. The composites showed not only no defects of discoloration, delamination, swelling, and cracking, because of high dimensional stability and low thickness swelling, but also much improved performance such as high bending strength, high hardness, abrasion resistance, high thermal conductivity as floor materials. This study also suggested the proper impregnating condition, such as 10 minutes of the preliminary vacuum time, $186^{\circ}C$ of the heating temperature and 10 minutes of the maintaining pressure time at the pressure of $30kgf/cm^2$. This metalized wood composites showed 7 times higher density than control, great increase in bending strength from $131.8N/mm^2$ to $192.3N/mm^2$, and great increase in hardness from $18.2N/mm^2$ to $90.4N/mm^2$. The composites demonstrated not only high emissivity of 91%, high shilding effectiveness of 92.59∼99.99%, high fire resistance but also great decrease in abrasion depth, water absorption and thickness swelling.

  • PDF

PVC 표면치장재를 적층한 치장목질마루판의 열특성 및 기초 품질성능 분석 (The Analysis of Thermal Conductivity and Basic Quality Performances of Decoration Wood-based Flooring Board Laminated with PVC Surface Decoration Materials)

  • 박철우
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.53-60
    • /
    • 2018
  • For test on flooring board laminated with PVC decoration materials in order to replace the current surface materials such as HPL in decoration wood-based flooring board. the Results of comparison and analysis are as follows: For thermal conductivity, flooring board decorated with PVC did not show huge differences when temperature was rising and lowering compared to the flooring materials laminated with the existing HPL surface materials. It seems the most meaningful results for using it as indoor flooring materials. That is, in Korea where there is the culture focusing on ondol heating, use amount of heat energy and efficiency of flooring materials are very important and sensitive issues, involving immediately with household economy of final consumers, and it might be a criteria to judge basic performances required as flooring materials. As a result of the analysis on mandatory durability test items such as abrasion resistance, absorption width expansion rate, impact resistance, surface hardness, and impact absorption for flooring materials, compared to flooring board laminated with general HPL surface decoration materials, decoration wood-based flooring board laminated with PVC surface decoration materials which is higher abrasion resistance with smaller transformation and has better durability and impact absorption of the surface, is available for actual application as indoor flooring board, and for replacing surface decoration materials impregnated with heat-hardened resion such as HPL.