• Title/Summary/Keyword: wood frame building

Search Result 51, Processing Time 0.027 seconds

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

Density and Water Absorption Ratio Property of the Magnesium Oxide Matrix According to Wood flour Addition Ratio (목분의 첨가량에 따른 산화마그네슘 경화체의 밀도 및 흡수율 특성)

  • Jung, Byeong-Yeol;Kim, Heon-Tae;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.236-237
    • /
    • 2014
  • Recently, it changes to the frame construction in the wall type structure for the life span improvement of the apartment house of our country. The execution of the light panel increased while the execution of the frame construction increased. Therefore, the density and absorption ratio of the magnesium oxide matrix according to the wood flour amount of addition ratio property try to be analyze for the lightweight of the surface material of the light panel. The test result, the density has been declined as the addition ratio increase of the wood flour. In the case of the water absorption ratio, water absorption ratio has been increased as addition ratio increase of wood flour. However, wood flour addition ratio 15% determined the most appropriate when considering the density and water absorption ratio.

  • PDF

Analysis of Hygrothermal Performance for Standard Wood-frame Structures in Korea (국내 농어촌 표준 목조주택의 hygrothermal 성능 분석)

  • Chang, Seong Jin;Kang, Yujin;Wi, Seunghwan;Jeong, Su-Gwang;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.440-448
    • /
    • 2016
  • As recent buildings become more air tight, the natural ventilation rate is significantly reduced and it leads to difficulty in removing accumulated moisture in buildings. Hot and humid weather in summer and the large amount of moisture caused by indoor activity are the major factors of moisture problem in Korea. The hygrothermal behavior of building environment has to be considered carefully to reduce condensation risk and mold growth potential, and comfortable indoor environment. In this study, we evaluated hygrothermal behavior of Standard Wood-frame Structure published in the Korea Rural Community Corporation Using WUFI simulation program. The results indicated that the total water contents of wood wall measured in 2014 was lower than wood wall in 2010. As a result of evaluation by separating the farming and fishing areas, Moisture problems in fishing area became larger. The walls had a significant impact on the relative humidity than the temperature each areas. Furthermore, excessive water content problem of the wood-based material was reduced in the wall that could be applied in the fishing villages by changing the outdoor finishing materials. And Mold growth risk on the interior materials could be removed through the different setting of the indoor temperature during summertime.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

An Assessment Study of Seismic Resistance of Two-story Wood-frame Housing by Shaking Table Tests

  • Ni, Chun;Kim, Sang-Yeon;Chen, Haijiang;Lu, Xilin
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • While there exists a relatively large body of technical information for the engineered design of wood-frame buildings to resist seismic ground motions, the quantitative assessment of seismic resistance of conventional houses built by prescriptive requirements is less well understood. Forintek Canada Corp., in collaboration with other research and industry partners, has embarked on a research project to address this topic. This paper will report on the seismic shake table tests of a full-scale wood-frame building. The two-story specimen, $6m{\times}6m$ in plan, was built on the seismic shake table at Tongji University in Shanghai, China, according to Part 9 of the 1995 National Building Code of Canada and shaken uni-directionally in each of the two principal directions. Three different seismic table motions were applied at increasing peak ground motion amplitudes up to 0.40 and 0.50 g. The specimen was repaired after the above sets of seismic table motions, and successive runs were conducted for increased door openings. Measurements included specimen accelerations, displacements and anchorage forces. Static stiffness of the specimen was measured at low force levels, and natural frequencies were measured after each seismic loading stage by applying low-level random excitation. The results presented consist of the capacity spectra of the shake table tests, changes in specimen stiffness and natural frequencies with increasing seismic loading. These results and those from other recent shake table tests elsewhere will be compared with simplified engineering calculations based on codified values of strength, and on that basis preliminary conclusions will be drawn on the adequacy of the current code provisions and design guides in Canada and the USA for conventional wood-frame construction.

Assessment of ASCE 7-10 for wind effects on low-rise wood frame buildings with database-assisted design methodology

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • v.27 no.3
    • /
    • pp.163-173
    • /
    • 2018
  • The design wind pressure for low-rise buildings in the ASCE 7-10 is defined by procedures that are categorized into the Main Wind Force-Resisting System (MWFRS) and the Components and Cladding (C&C). Some of these procedures were originally developed based on steel portal frames of industrial buildings, while the residential structures are a completely different structural system, most of which are designed as low-rise light-frame wood constructions. The purpose of this study is to discuss the rationality (or irrationality) of the extension of the wind loads calculated by the ASCE 7-10 to the light-frame wood residential buildings that represent the most vulnerable structures under extreme wind conditions. To serve this purpose, the same approach as used in the development of Chapter 28 of the ASCE 7-10 that envelops peak responses is adopted in the present study. Database-assisted design (DAD) methodology is used by applying the dynamic wind loads from Louisiana State University (LSU) database on a typical residential building model to assess the applicability of the standard by comparing the induced responses. Rather than the postulated critical member demands on the industrial building such as the bending moments at the knee, the maximum values at the critical points for wood frame buildings under wind loads are used as indicators for the comparison. Then, the critical members are identified through these indicators in terms of the displacement or the uplift force at connections and roof envelope. As a result, some situations for each of the ASCE 7 procedures yielding unconservative wind loads on the typical low-rise residential building are identified.

Improvement of Energy Efficiency in Wood Frame House with Energy Efficient Methods (건물 에너지 절약요소 적용을 통한 목조주택의 에너지 성능 개선)

  • Kim, Sejong;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This research was carried out to evaluate and raise the energy efficiency of wood frame house. The commercial solution program CE3 (Construction Energy Efficiency Evaluation) was used for simulating the energy consumption in the single-family wood frame house. The results showed that the annual heating energy demand of the house was 160 kWh per 1 $m^2$ floor area. In order to decrease the heating energy demand, the following energy efficiency methods were applied to the simulation : a) simplification of building shape, b) decrease of windows area, c) application of high performance windows (with low thermal transmittance) and d) application of heat recovery ventilator. In case of replacement of the windows with high performance one with thermal transmittance 1 $W/m^2{\cdot}K$, the lowest heating demand of 80 $kWh/m^2{\cdot}a$ was obtained. The best combination of methods, application of high performance windows and heat recovery ventilator, showed heating energy demand 34.5 $kWh/m^2{\cdot}a$.

Lateral Resistance of Reinforced Light-Frame Wood Shear Walls

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2023
  • In light-frame timber construction, the shear wall is one of the most important components that provide resistance to lateral loads such as earthquakes or winds. According to KDS (Korea Design Standard) 42 50 10, shear walls are to be constructed using wood-based structural sheathing, with studs connected by 8d nails spaced 150 mm along the edge and 300 mm in the field. Even though small-scale residential timber building can be designed to exhibit seismic resistance using light-frame timber shear walls in accordance with KDS 42 50 10, only the abovementioned standard type of timber shear wall is available. Therefore, more types of timber shear walls composed of various materials should be tested to measure their seismic resistance, and the results should be incorporated into the future revision of KDS 42 50 10. In this study, the seismic resistance of shear walls composed of structural timber studs and wood-based structural sheathing with reinforced nailing is tested to evaluate the effects of the reinforcement. For the nailing reinforcement, shear wall specimens are constructed by applying nail spacings of 75-150 mm and 50-100 mm. For the shear wall specimens with one sheathing and reinforced nailing, the shear strengths are 1.7-2.0 times higher than that of the standard shear wall (nail spacing of 150-300 mm). The shear strength of the shear walls with sheathing on both sides is 2.0-2.7 times higher than that of the standard shear wall.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.