• Title/Summary/Keyword: wireless inclination sensor

Search Result 9, Processing Time 0.027 seconds

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

A study on the Remote Control System for Measuring Gradient of temporary earth retaining structure (흙막이 가시설 구조물의 무선원격계측관리시스템에 관한 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Kim, Sang-Won;Seo, Yong-Chil;Shin, Chan-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.49-52
    • /
    • 2011
  • This study concerned with the retention structures or inverted temporary building for displacement measurement in the underground soil after drilling a vertical tilt sensor attached to the vertical distance required to maintain a real-time measurement and management in order to install the wireless measuring devices installed in the field through remote control and management program for the safety of retaining structures temporary building be found on the internet in real time temporary building the retention is to develop a safety management system. And based on this technology to monitor the future status of the various structures possible to add a variety of sensors and Life Cycle Prediction of the structure and needs to evolve into intelligent systems and wireless networks using wireless communications infrastructure systems based on expanding domestic market penetration by developing instrumentation pioneer in overseas markets as well as the activation can also be judged.

  • PDF

Heuristic Backtrack Search Algorithm for Energy-efficient Clustering in Wireless Sensor Networks (무선 센서 네트웍에서 에너지 효율적인 집단화를 위한 경험적 백트랙 탐색 알고리즘)

  • Sohn, Surg-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.219-227
    • /
    • 2008
  • As found in research on constraint satisfaction problems, the choice of variable ordering heuristics is crucial for effective solving of constraint optimization problems. For the special problems such as energy-efficient clustering in heterogeneous wireless sensor networks, in which cluster heads have an inclination to be near a base station, we propose a new approach based on the static preferences variable orderings and provide a pnode heuristic algorithm for a specific application. The pnode algorithm selects the next variable with the highest Preference. In our problem, the preference becomes higher when the cluster heads are closer to the optimal region, which can be obtained a Priori due to the characteristic of the problem. Since cluster heads are the most dominant sources of Power consumption in the cluster-based sensor networks, we seek to minimize energy consumption by minimizing the maximum energy dissipation at each cluster heads as well as sensor nodes. Simulation results indicate that the proposed approach is more efficient than other methods for solving constraint optimization problems with static preferences.

  • PDF

A Study on Implementation of Safety Navigation Mobile Application Converging Marine Environment Information and Location-Based Service

  • Jeon, Joong-Sung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.289-295
    • /
    • 2019
  • In this paper, we implemented a safety navigation mobile application that converged AtoN information and location-based services. When application user uses the smartphone's GPS sensor to transmit the user's vessel location data to the data server, the user receives information of which its providing range is considered, such as stored AtoN data, neighboring vessels information, danger area, and weather information in the server. Providing information is sorted based on the smartphone's direction and inclination and it will be also delivered via wireless network (5G, LTE, 3G, WiFi). Additionally the application is available to implement other functions such as information provision through voice and text alarming service when the user's vessel is either approaching or entering the danger area, and an expanded information provision service that is available in shadow area linking with data-storing methods; other linkable data such as weather and other neighboring vessels will be applied based on the lasted-saved data perceived from the non-shadow area.

Implementation of the Alert System for Safety of Workers (근로자의 안전을 위한 경보시스템 구현)

  • Kim, In-Min;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1138-1142
    • /
    • 2011
  • This paper proposes the Alert System, the purpose of which is to detect an accident and to take care of it quickly in a working place. In the previous studies, a wireless network system was suggested using 'Star Topology'. However, this study constructs the wireless network system of Peer-to-Peer Topology, which allows to build more efficient network for communication. Also, with this system it is possible to check other the worker's situation through double sensing with Temperature/Gas sensor and Inclination sensor. In order to take action quickly, the Alert System is using a monitoring program which visualizes a worker's situation and the area where an accident occurs.

Development of Biped Walking Robot and Its Swing Motion (이족 보형로봇 개발과 그네 운동)

  • Park, Seong-Hoon;Kim, Jee-Hong;Yi, Soo-Yeong;Chong, Kil-To;Sung, Young-Whee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2411-2413
    • /
    • 2003
  • A new small humanoid robot system is developed in this paper. The humanoid robot has total 20 DOFs : 6 DOFs in each legs, 3 DOFs in each arms, and 2 DOFs in head, 34cms in height, and 2kgs in weight. The robot has the following characteristics: (1) PDA as host controller (2) network-based joint controller (3) wireless camera attached in robot's head (4) mechanism design by CATIA and high speed laser prototyping (5) graphic MMI(Man-Machine Interface) utilizing the CATIA data. By using ADXL inclination sensor, we implement the rope swing with the robot leg motion as well as walking.

  • PDF

Development of MEMS Inclinometer Sensor System (MEMS형 경사계 센서의 유효성 평가)

  • Ha, Dae Woong;Kim, Jong Moon;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Inclinometer sensors are widely applied in many fields. Especially in the field of construction of high-rise buildings also measure the horizontal and vertical help has been applied to monitor. Recent micro electro-mechanical system(MEMS) technology with the development of the many sensors have been developed. In this paper, a MEMS inclinometer is based on a MEMS accelerometer. The sensor can measure the angle of inclination using the relationship between static acceleration and gravity acceleration from an accelerometer. From this principle, inclinometer has been developed that has more accurate. The accuracy is proved by the experiment with laser displacement. Results in the experiment express high-accuracy, stability and economics of MEMS inclinometer. In conclusion, wireless MEMS inclinometer sensor is expected to be applicable in the areas of construction and many other industries with accurate and convenient monitoring system.