• Title/Summary/Keyword: wireless data

Search Result 5,114, Processing Time 0.033 seconds

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Analysis of Energy Consumption and Processing Delay of Wireless Sensor Networks according to the Characteristic of Applications (응용프로그램의 특성에 따른 무선센서 네트워크의 에너지 소모와 처리 지연 분석)

  • Park, Chong Myung;Han, Young Tak;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Wireless sensor networks are used for data collection and processing from the surrounding environment for various applications. Since wireless sensor nodes operate on low computing power, restrictive battery capacity, and low network bandwidth, their architecture model has greatly affected the performance of applications. If applications have high computation complexity or require the real-time processing, the centralized architecture in wireless sensor networks have a delay in data processing. Otherwise, if applications only performed simple data collection for long period, the distributed architecture wasted battery energy in wireless sensors. In this paper, the energy consumption and processing delay were analyzed in centralized and distributed sensor networks. In addition, we proposed a new hybrid architecture for wireless sensor networks. According to the characteristic of applications, the proposed method had the optimal number of wireless sensors in wireless sensor networks.

Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring (구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구)

  • Kim, Eun-Jin;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.42-48
    • /
    • 2016
  • Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.

A Novel Air Indexing Scheme for Window Query in Non-Flat Wireless Spatial Data Broadcast

  • Im, Seok-Jin;Youn, Hee-Yong;Choi, Jin-Tak;Ouyang, Jinsong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.400-407
    • /
    • 2011
  • Various air indexing and data scheduling schemes for wireless broadcast of spatial data have been developed for energy efficient query processing. The existing schemes are not effective when the clients' data access patterns are skewed to some items. It is because the schemes are based on flat broadcast that does not take the popularity of the data items into consideration. In this paper, thus, we propose a data scheduling scheme letting the popular items appear more frequently on the channel, and grid-based distributed index for non-flat broadcast (GDIN) for window query processing. The proposed GDIN allows quick and energy efficient processing of window query, matching the clients' linear channel access pattern and letting the clients access only the queried data items. The simulation results show that the proposed GDIN significantly outperforms the existing schemes in terms of access time, tuning time, and energy efficiency.

Design and Development of Framework for Wireless Data Broadcast of XML-based CCR Documents (XML 기반 CCR 문서의 무선 데이터 방송을 위한 프레임워크의 설계와 구현)

  • Im, Seokjin;Hwang, Hee-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.5
    • /
    • pp.169-175
    • /
    • 2015
  • In the field of health informatics converging ICT technology and medicine technology, XML-based CCR document make sure the continuity and mobility of the information of patients. When a number of clients access CCR documents, wireless data broadcast that supports any number of clients can be an alternative for the scalability. In this paper, we propose a framework for wireless data broadcast of XML-based CCR documents. We design and implement the framework that can adopt various data scheduling algorithms and indexing schemes for the optimized performances of clients. The implemented framework shows the efficiency with simulations adopting various data scheduling algorithms and indexing schemes.

Self-similarity of SMS Traffic (SMS 트래픽의 Self-similarity)

  • Ha, Jun;Shin, Woo-Cheol;Park, Jin-Kyung;Choi, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.353-356
    • /
    • 2003
  • As the wireless mobile telecommunication system has been developed with astonishment, its offering service has also widely been expanded including various data service. Currently, the wireless mobile telecommunication network presents voice service that covers for the most part of the whole service areas. For this reason, the availability of the switching capacity in the mobile switching center(MSC) is manipulated by the required volume of voice service. However, considering the increase of data service, it is desirable for the current switching method to be modified for more efficiency. In this Paper, we analyze the data traffic caused by providing data service in the wireless mobile telecommunication network. For this, we are firstly going to review the result of the analysis in the feature of the data traffic. Secondly, based on the review, we are also going to perform analyzing the other feature of the data traffic normally generated in the wireless mobile telecommunication network. We expect that this paper would be utilized as an elementary source for the feature of the SMS data .traffic and it will be an honour for ourselves to work on it.

  • PDF

An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection (QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템)

  • Lee, Dae-Seok;Bhardwaj, Sachin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

A Pattern-based Query Strategy in Wireless Sensor Network

  • Ding, Yanhong;Qiu, Tie;Jiang, He;Sun, Weifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1546-1564
    • /
    • 2012
  • Pattern-based query processing has not attracted much attention in wireless sensor network though its counterpart has been studied extensively in data stream. The methods used for data stream usually consume large memory and much energy. This conflicts with the fact that wireless sensor networks are heavily constrained by their hardware resources. In this paper, we use piece wise representation to represent sensor nodes' collected data to save sensor nodes' memory and to reduce the energy consumption for query. After getting data stream's and patterns' approximated line segments, we record each line's slope. We do similar matching on slope sequences. We compute the dynamic time warping distance between slope sequences. If the distance is less than user defined threshold, we say that the subsequence is similar to the pattern. We do experiments on STM32W108 processor to evaluate our strategy's performance compared with naive method. The results show that our strategy's matching precision is less than that of naive method, but our method's energy consumption is much better than that of naive approach. The strategy proposed in this paper can be used in wireless sensor network to process pattern-based queries.

Analytic model for the Power-Optimal Data Transmission Interval of Wireless Sensors in Internet of Things (사물 인터넷 환경에서 무선 센서 기기의 전력 효율적 데이터 전송주기 결정을 위한 최적화 모형)

  • Lee, Se Won;Lim, Sung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1373-1379
    • /
    • 2018
  • Wireless sensors in Internet of Things are getting closer to our daily lives. Since wireless sensors have limited battery power, energy efficient schemes should be employed. In this paper, we analyzed a system by using stochastic model and then solved an optimization problem, given that the gathered sensor data are aggregated before being transmitted to the sensor servers from a wireless sensor device. Using the developed model, we also proposed a optimal solution to determine the energy efficient sensor data transmitting interval. We also conducted performance evaluations of our proposals using numerical examples.

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.