DOI QR코드

DOI QR Code

Kalman Filter-based Data Recovery in Wireless Smart Sensor Network for Infrastructure Monitoring

구조물 모니터링을 위한 무선 스마트 센서 네트워크의 칼만 필터 기반 데이터 복구

  • 김은진 (울산과학기술원(UNIST) 도시환경공학부) ;
  • 박종웅 (미국 일리노이 주립대학교) ;
  • 심성한 (울산과학기술원(UNIST) 도시환경공학부)
  • Received : 2015.11.26
  • Accepted : 2016.04.26
  • Published : 2016.05.01

Abstract

Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.

사회기반시설물의 안전성을 효과적으로 평가하고 모니터링하기 위해 무선 스마트 센서가 개발되어 전 세계적으로 연구가 진행되고 있다. 무선 스마트 센서는 통상 계측 및 임베디드 데이터 연산, 무선 통신이 가능한 공통점을 갖고 있어 기존의 유선 기반 센서가 가진 단점을 극복할 수 있을 것으로 기대되고 있다. 그러나 구조물의 장기 모니터링의 경우 내구성이 충분하지 못해 발생하는 센서 고장이나, 환경적 이유로 인한 무선 통신이 불안정할 경우 계측 데이터를 가져올 수 없는 문제가 발생할 수 있다. 본 연구에서는 무선 스마트 센서 기반의 네트워크에서 이와 같은 문제로 센서 노드에 무선 통신으로 접근할 수 없는 경우를 대처하기 위해, 칼만 필터 기반의 데이터 복구를 수행하여 무선 스마트 센서 네트워크의 신뢰성을 향상시키는 기법을 제안한다. 본 논문에서는 무선 스마트 센서의 연산 기능을 활용하여 네트워크 내에서 계측된 가속도 데이터를 바탕으로 유실된 센서의 가속도 계측 데이터를 추정한다. 개발된 무선 스마트 센서 네트워크 시스템의 성능을 확인하기 위해 단순보 구조에서 실험을 수행하여 추정된 가속도 응답과 계측 값을 비교하였다.

Keywords

References

  1. Jo, H. (2013), Multi-scale Structural Health Monitoring Using Wireless Smart Sensors, PhD dissertation, University of Illinois at Urbana-Champaign.
  2. Jo, H., and Spencer, B. F. (2014), Multi-Metric Model ased Structure Health Monitoring, Proceedings of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, San Diego, 90611F-90611F.
  3. Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S. and Carryer, E. (2004), Embedding Damage Detection Algorithms in a Wireless Sensing Unit for Operational Power Efficiency, Smart Materials and Structures, 13(4), 800-810. https://doi.org/10.1088/0964-1726/13/4/018
  4. Palanisamy, R.P., Cho, S., Kim, H., and Sim, S.-H. (2015), Experimental Validation of Kalman Filter-based Strain Estimation in Structures Subjected to Non-zero Mean Input, Smart Structures and Systems, 15(2), 489-503. https://doi.org/10.12989/sss.2015.15.2.489
  5. Papadimitriou, C., Fritzen, C.P., Kraemer, P. and Ntotsios, E. (2010), Fatigue Predictions in Entire body of Metallic Structures from a Limited Number of Vibration Sensors Using Kalman Filtering, Structural Control Health Monitoring, 18(5), 554-573. https://doi.org/10.1002/stc.395
  6. Park, J.-W., Sim, S.-H., and Jung, H.J. (2013), Wireless Sensor Network for Decentralized Damage Detection of Building Structures, Smart Structures and Systems, 12(3-4).
  7. Rice, J. A., and Spencer Jr, B. F. (2009), Flexible Smart Sensor Framework for Autonomous Full-scale Structural Health Monitoring, Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign.
  8. Rice, J. A., Mechitov, K. A., Spencer Jr, B. F., and Agha, G. (2008), A Service-oriented Architecture for Structural Health Monitoring Using Smart Sensors, In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing.
  9. Sim, S.-H. and Spencer, Jr., B.F. (2009), Decentralized Strategies for Monitoring Structures using Wireless Smart Sensor Networks. Newmark Structural Laboratory Report Series, University of Illinois at Urbana-Champaign, Report 19.
  10. Sim, S.-H., Li, J., Jo, H., Park, J.-W., Cho, S., Spencer, Jr., B.F., and Jung, H.-J. (2014), A Wireless Smart Sensor Network for Automated Monitoring of Cable Tension, Smart Materials and Structures, 23(2), 025006. https://doi.org/10.1088/0964-1726/23/2/025006
  11. Sim, S.-H., Spencer, Jr., B. F., Zhang, M., and Xie, H. (2009), Automated Decentralized Modal Analysis using Smart Sensors, Journal of Structural Control and Health Monitoring, 17(8), 872-894.
  12. Smyth, A., and Wu, M. (2007), Multi-rate Kalman Filtering for the Data Fusion of Displacement and Acceleration Response Measurements in Dynamic System Monitoring, Mechanical Systems and Signal Processing, 21(2), 706-723. https://doi.org/10.1016/j.ymssp.2006.03.005
  13. Spencer, B. F., Ruiz-Sandoval, M. E., and Kurata, N. (2004), Smart Sensing Technology: Opportunities and Challenges, Structural Control and Health Monitoring, 11(4), 349-368. https://doi.org/10.1002/stc.48
  14. Straser, E.G. and Kiremidjian, A.S. (1998), A Modular, Wireless Damage Monitoring System for Structures, Report No. 128, John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
  15. Zimmerman, A. T., Shiraishi, M., Swartz, R. A., and Lynch, J. P. (2008), Automated Modal Parameter Estimation by Parallel Processing within Wireless Monitoring Dystems, Journal of Infrastructure Systems, 14(1), 102-113. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(102)