• Title/Summary/Keyword: wireless control network

Search Result 1,580, Processing Time 0.034 seconds

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Yang Hae-Kwon;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.442-445
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts an acquisited data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In this paper, we proposes a reliable congestion protocol, ratted HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.

  • PDF

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.

Congestion Control Scheme for Multimedia Streaming Service in Broadband Wireless Networks (광대역 무선 네트워크에서 멀티미디어 스트리밍 서비스를 위한 혼잡 제어 기법)

  • Lee, Eun-Jae;Chung, Kwang-Sue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2553-2562
    • /
    • 2013
  • It is difficult for TCP congestion control algorithm to ensure the bandwidth and delay bound required for media streaming services in broadband wireless network environments. In this paper, we propose the COIN TCP (COncave INcrease TCP) scheme for providing a high-quality media streaming services. The COIN TCP concavely increases the congestion window size by adjusting the increment rate of congestion window, that is inversely proportional to the amount of data accumulated in the router queue. As a result, our scheme can quickly occupy the available bandwidth and prevent the heavy congestion. It also improves the link utilization by adjusting the decrement rate of congestion window according to the packet loss rate with the random loss. Through the simulation results, we prove that our scheme improves the total throughput in broadband wireless network.

A Handoff Mechanism to Avoid Congestion in Wireless Cells (무선 셀에서의 혼잡 발생을 피하는 핸드오프 방안)

  • 변해선;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.595-603
    • /
    • 2003
  • To provide mobile nodes with continuous communication services, it is important to reduce the packet losses during handoffs. The handoffs of mobile nodes cause packet losses and decrease of TCP throughput on account of a variety of factors. One of those is the congestion in the new cell. Due to the congestion, not only the node moving into the cell but also the already existing nodes that were successfully communicating in the cell suffer the performance degradation. In this paper we propose a new handoff mechanism called‘packet freeze control’, which avoids the congestion caused by handoffs by regulating the influx of traffic burst into the new cell. Packet freeze control is applicable to a wireless network domain in which FAs(Foreign Agents) are connected hierarchically and constitute a logical tree. It gradually increases the number of packets transferred to the new cell by buffering packets in the FAs on the packet delivery path over the wireless network domain. The simulation results show that the proposed mechanism not only reduces the packet losses but also enhances the TCP throughput of other mobile nodes in the cell.

Design of QoS based MAC protocol considering data urgency for Energy harvesting wireless sensor networks (에너지 하베스팅 센서네트워크에서 데이터의 긴급성을 고려한 QoS기반 MAC프로코콜 설계)

  • Park, Gwanho;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.1004-1010
    • /
    • 2019
  • In the EH-WSN (Energy harvesting wireless sensor network), a MAC (medium access control) protocol is required to select a relay node considering the power status of a node. Existing EH-WSN studies emphasize the power aspect, so it does not consider the QoS like the urgency of the sensed data. The required power and transmission delay must be changed according to the urgency so that the medium access control according to the data QoS can be performed. In case of relay node, relaying data without consideration of data urgency and node power may cause delay due to power shortage in case of urgent data. In this paper, we designed a MAC protocol that minimizes the power shortage that can occur during emergency data generation. For this, relay node requirements are set differently according to the urgency of data. The performance was analyzed through simulation. Simulation results show the reduced latency and improved reliability of urgent data transmission.

NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

  • Lee, Jae-Hyung;Kim, Jung-Rae;Park, Min-U;Koo, Ja-Hwan;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.333-351
    • /
    • 2008
  • Transmission control protocols have to overcome common problems in wireless networks. TCP employing both packet loss discrimination mechanism and available bandwidth estimation algorithm, known as the good existing solution, shows significant performance enhancement in wireless networks. For instance, TCP New Jersey which exhibits high throughput in wireless networks intends to improve TCP performance by using available bandwidth estimation and congestion warning. Even though it achieves 17% and 85% improvements in terms of goodput over TCP Westwood and TCP Reno, respectively, we further improve it by exploring maximized available bandwidth estimation, handling bit-error-rate error recovery, and effective adjustment of sending rate for retransmission timeout. Hence, we propose TCP NJ+, showing that for up to 5% packet loss rate, it outperforms other TCP variants by 19% to 104% in terms of goodput when the network is in bi-directional background traffic.

Ubiquitous Sensor Network-based Rehabilitation Center

  • Jarochowski, Bart;Kim, Hyung-Jun;Ryu, Dae-Hyun;Shin, Seung-Joong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 2007
  • This paper discusses the implementation of a rehabilitation center based on a ubiquitous sensor network. This paper discusses the implementation of a rehabilitation center based on a ubiquitous sensor network. We recognize that certain mild conditions requiring rehabilitation may be treated with minimal human supervision. In place of this constant human supervision, a variety of sensors are used to monitor the patient and rehabilitation progress. These sensors send data through a wireless Zigbee network to a server which stores the data and makes it available to a rehabilitation expert for analysis. This rehabilitation expert also issues rehabilitation prescriptions which are created based on the expert's determination of the patient's condition. By having the ability to control the rehabilitation equipment used, strictly enforce the assigned prescription, and constantly monitor the patient for any warning signs, the system ensures a safe and optimal rehabilitation session.

Adaptive Multi-level Streaming Service using Fuzzy Similarity in Wireless Mobile Networks (무선 모바일 네트워크상에서 퍼지 유사도를 이용한 적응형 멀티-레벨 스트리밍 서비스)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3502-3509
    • /
    • 2010
  • Streaming service in the wireless mobile network environment has been a very challenging issue due to the dynamic uncertain nature of the channels. Overhead such as congestion, latency, and jitter lead to the problem of performance degradation of an adaptive multi-streaming service. This paper proposes a AMSS (Adaptive Multi-level Streaming Service) mechanism to reduce the performance degradation due to overhead such as variable network bandwidth, mobility and limited resources of the wireless mobile network. The proposed AMSS optimizes streaming services by: 1) use of fuzzy similarity metric, 2) minimization of packet loss due to buffer overflow and resource waste, and 3) minimization of packet loss due to congestion and delay. The simulation result shows that the proposed method has better performance in congestion control and packet loss ratio than the other existing methods of TCP-based method, UDP-based method and VBM-based method. The proposed method showed improvement of 10% in congestion control ratio and 8% in packet loss ratio compared with VBM-based method which is one of the best method.

Slective Buffering Macro Handover Which Applies The F-SNOOP in Hierarchical structure (계층 구조에서 F-SNOOP을 적용한 선택적 버퍼링 매크로 핸드오버)

  • Ahn Chi-Hyun;Kim Dong-Hyun;Kim Hyoung-Chul;Ryou Hwang-Bin;Lee Dae-Young;Jun Kye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.413-420
    • /
    • 2006
  • HMIPv6 is designed to reduce the signaling load to external network and improve handover speed of MN by including Mobility Anchor Point(MAP) in local handover. However in this case of macro handover, it's just used pervious MIPv6 handover algorithm. So, it occurs packet loss and transmission delay problem. In this paper, we propose the mechanism applying the HMIPv6 for Fast Handover to choose suitable to the condition buffering handover. The condition for the selection is result distance measurement between MN and CN, between MN and NAR. Furthermore, using F-SNOOP protocol, it is possible to improve wireless network performance. Wireless network has high Bit Error Rate(BER) characteristic because of path loss, fading, noise and interference. TCP regards such errors as congestion and starts congestion control. This congestion control makes packet transmission rate low. However, F-SNOOP improves TCP performance based on SNOOP and Freeze TCP that use Zero Window Advertisement(ZWA) message when handoff occurs in wireless network.