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Abstract 
 

Transmission control protocols have to overcome common problems in wireless networks. 
TCP employing both packet loss discrimination mechanism and available bandwidth 
estimation algorithm, known as the good existing solution, shows significant performance 
enhancement in wireless networks. For instance, TCP New Jersey which exhibits high 
throughput in wireless networks intends to improve TCP performance by using available 
bandwidth estimation and congestion warning. Even though it achieves 17% and 85% 
improvements in terms of goodput over TCP Westwood and TCP Reno, respectively, we 
further improve it by exploring maximized available bandwidth estimation, handling 
bit-error-rate error recovery, and effective adjustment of sending rate for retransmission 
timeout. Hence, we propose TCP NJ+, showing that for up to 5% packet loss rate, it 
outperforms other TCP variants by 19% to 104% in terms of goodput when the network is in 
bi-directional background traffic. 
 
 
Keywords: Transport control protocol (TCP), congestion control, congestion, wireless link 
bit error rate (BER), retransmission timeout (RTO), TCP New Jersey 
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1. Introduction 

Transmission control protocol (TCP) provides reliable data transmission in wired networks 
[1][2]. However, TCP in wireless networks, such as wireless LANs, mobile, ad hoc networks, 
cellular networks, and wireless mesh networks, suffers from the repeated packet losses due to 
generic characteristics including limited bandwidth, high bit-error-rate (BER), handover, 
channel interference, and fading which bring performance degradation [3]. Even though recent 
researches focus on TCP performance during handover [4][5][6], the basic reason for the 
performance degradation is that TCP congestion control [2] mechanism cannot discriminate 
between the packet losses caused by wireless link errors and those caused by network 
congestion, thus, reacting to these losses by reducing its congestion window (cwnd). Therefore, 
these inappropriate reductions of the cwnd lead to unnecessary throughput degradation [7]. 

Over the last decade, a considerable number of studies have been conducted for the 
improvement of wireless TCP performance with the advances of wireless infrastructure 
technologies [8]. The wireless TCP schemes can be divided into split and end-to-end 
approaches [9]. The split approach attempts to prevent the wireless portion from the wired 
network by separating the TCP connection at the base station. The base station behaves as a 
terminal (or a proxy) in both the wired and wireless portions. Both end hosts communicate 
with the base station independently without knowledge of the other end. The drawback of split 
approach is that it violates end-to-end TCP semantic. On the other hand, the end-to-end 
approaches, such as TCP New Reno [10], Westwood [11], Jersey [12], and New Jersey [13], 
deal with the route from the sender to the receiver as an end-to-end path, and the sender is 
acknowledged directly by the receiver. The receiver provides feedback reflecting the network 
condition, and the sender makes decisions for sending rate. 

TCP Westwood improves addictive increase multiplicative decrease (AIMD) [14] which is 
the conventional congestion window adjustment strategy of the regular TCP and intends to 
improve TCP performance by effectively adjusting its transmission rate on the basis of the 
available bandwidth estimation (ABE) algorithm at the sender. Although various TCP 
Westwood variants are studied, they have the same concept of using ABE at the sender side. 
On the other hand, TCP Jersey and New Jersey are based on the integration of the sender-side 
ABE algorithm and the packet loss differentiated scheme in the intermediate router, thus, 
resulting in higher throughput. TCP Westwood, TCP Jersey, and New Jersey are good 
solutions in wireless networks assuming decent signaling environment. Nowadays, because 
many wireless technologies including WiBro, Bluetooth, HSDPA, and so on, are mixed in our 
airspace, BER is increased temporarily because of the interference with each other. Hence an 
efficient method robust to the high BER environments is needed based on existing TCP 
techniques. 

Although TCP New Jersey achieves 17% and 85% improvements in goodput over TCP 
Westwood and TCP Reno, respectively, we further increase TCP New Jersey performance by 
employing maximized available bandwidth estimation (MABE), handling BER error recovery 
(BERR), and effective adjustment of sending rate (EASR) for retransmission timeout 
mechanisms. In MABE, maximum estimation value is selected between sender side estimation 
and receiver side one. BERR and EASR reduce recovery time to compensate dropped sending 
rate. Hence, we propose TCP NJ+, showing up to 5% high BER wireless link error rate, it 
outperforms other TCP variants by 19% to 104% in terms of goodput regardless of 
background traffic when the network is in bi-directional congestion. Although our proposed 
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schemes, such as BERR and EASR, implement based on TCP New Jersey, it is possible to 
employ other TCP variants using packet loss discrimination schemes. 

The rest of the paper is organized as follows: Section 2 reviews the related works of the 
existing wired and wireless TCP schemes. Section 3 describes the improved mechanisms of 
TCP NJ+ in detail. Section 4 presents performance evaluation via network simulator [15] 
under various network conditions. The final section offers some concluding remarks. 

2. Preliminaries 
In this section, we describe typical transport protocols TCP Reno and New Reno in wired 
networks. We also discuss TCPs in wireless networks. Here we describe TCP Westwood, 
Jersey, and New Jersey which are well-known methods discussed in the literature. 

2.1 TCP Reno 
TCP Reno is a standard TCP for the effective and reliable data transfer in wired networks. In 
the fast recovery algorithm [16] of TCP Reno which is the additional scheme comparing with 
TCP Tahoe [1], when the packet loss is detected at the sender, it enters the congestion 
avoidance phase instead of returning to the slow start phase after the lost packet is 
retransmitted. Hence, fast recovery inflates the reduced transmission rate quickly. 

The fast recovery algorithm takes care of a single packet loss effectively within one 
congestion window(cwnd). But TCP Reno has a problem that if the multiple packet drops 
occur, it would be forced to invoke multiple fast recovery algorithms repeatedly, slowing 
down the sending rate continuously. Namely, it induces the unnecessary decreasing of sending 
rate in wireless networks because the packet is dropped frequently. 

2.2 TCP New Reno 
TCP New Reno improves fast recovery that brings congestion avoidance phase after 
performing fast retransmit [14] if the packet loss is detected by the sender. The multiple packet 
losses force TCP Reno to invoke slow down the recovery of the dropped transmission rate. 
TCP New Reno handles multiple packet losses for one congestion window. In TCP New Reno, 
the fast recovery does not terminate until receiving of full ACK. When the sender receives 3 
duplicate acknowledgements (3-DUPACKs), and each is the partial ACK, it just retransmits 
the lost packet and does not terminate the fast recovery which does not reduce the cwnd. Hence, 
the cwnd is decreased once when multiple packet losses are occurred. Namely, TCP New Reno 
fast recovery takes care of the multiple packet drops from one cwnd. 

However, the shortcoming of New Reno is that because it cannot distinguish the causes of 
packet loss, more effective fast recovery cannot be performed. In addition, the reduction of 
sending rate to use the AIMD mechanism is to invoke the dropping of throughput in wireless 
networks where the multiple packet loss usually happens. 

2.3 TCP Westwood 
TCP Westwood is a wireless TCP using end-to-end proactive congestion control. TCP 
Westwood estimates the current network bandwidth at sender side. The sender estimates the 
network bandwidth by exploiting the rate and pattern of returning ACK through the reverse 
links. Upon detecting a packet loss, the sender adjusts the cwnd according to the estimation. 
By employing this estimator it exhibits higher performance than other TCP variants such as 
TCP Reno, New Reno, and SACK [17] in both the wired and wireless networks. 
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However, TCP Westwood does not distinguish the cause of packet loss. It will adjust the 
transmission rate constantly, upon experiencing the packet loss. Therefore it decreases the 
throughput in high BER wireless networks. It is a problem that the accuracy of estimated 
available bandwidth depends on the network condition which is changed based on the network 
traffic in links. In addition, it infringes on the other connection's bandwidth when the multiple 
connections share one link. Hence, the problem of TCP Westwood is how accurately it 
estimates the rate. 

2.4 TCP Jersey 
TCP Jersey is employed to improve performance in wireless networks including congestion 
warning (CW) mechanism that differentiates the packet loss by network congestion between 
the packet loss by wireless link error and ABE algorithm. When the ACK packet arrives at the 
sender, the ABE algorithm computes the current available bandwidth based on the time 
interval of ACK packets. The optimized window (ownd) is calculated based on this estimation 
when the packet loss is detected. 

CW is an intermediate router mechanism based on explicit congestion notification (ECN) 
scheme [18]. Besides the ECN, the CW is set to a threshold with fewer parameter settings at 
the intermediate router that shall mark all the packets when the average queue length exceeds 
the threshold. The sender who receives the marked packets decreases its cwnd, otherwise it 
maintains the current cwnd. CW does not detect the congestion in the link layer. However, the 
packet loss caused by the link layer congestion handles the link layer retransmission and the 
rate control in the TCP sender-side. 

2.5 TCP New Jersey 
TCP New Jersey improves the ABE algorithm using the TCP Jersey. It adjusts slow start 
threshold (ssthreshold) based on the estimation which is calculated by ABE algorithm. TCP 
Jersey and New Jersey consist of two key components, the ABE algorithm and the CW 
mechanism, that helps the sender effectively differentiate the cause of packet loss at 
intermediate router. TCP New Jersey sender estimates the current available bandwidth based 
on the packet interarrival time on the receiver. TCP New Jersey is robust to background traffic 
in reverse links because of timestamp-based ABE. 

However, TCP New Jersey experiences the degradation of throughput depending on 
background traffic pattern such as congestion in the forward link and bi-directional 
background traffic. And it cannot increase the reduced cwnd according to the cause of packet 
loss effectively. Consequently, when the packet loss occurs consistently because of high BER 
in wireless networks, it may decrease the throughput due to the reason that is mentioned 
above. 

3. The Proposed Scheme 
TCP New Jersey proposed a timestamp-based available bandwidth estimation algorithm. As 
TCP New Jersey, however, considers the state of one link only, it is not without a flaw that 
unidirectional background traffic determines the data throughput. TCP New Jersey has 
another drawback that it is incapable of effective throughput recovery from TCP packet loss. 
In particular, packet loss caused by a high BER, as opposed to that caused by congestion, 
requires an effective recovery algorithm. In this respect, TCP NJ+ proposes a mechanism 
designed to maintain a high data throughput without compromising the fairness of the 
proposed algorithm and effectively recover the throughput from a reduction due to packet loss 
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by comparing the available bandwidths of a bidirectional link and securing an available 
bandwidth in a more aggressive manner. TCP NJ+ consists of three algorithms. MABE is an 
algorithm designed to measure and compare available bandwidths based on the ACK 
receiving time and data receiving time and aggressively calculate the available bandwidth. 
EASR, then, effectively handles the reduced transfer rate depending on the results of MABE 
when an RTO occurs. Lastly, BERR is capable of effectively compensating for the reduction 
of the congestion window size when packet loss occurs due to a high BER. 

3.1 Maximized Available Bandwidth Estimation (MABE) 
The calculation of an available bandwidth appropriate for network conditions is essential to 
the maintenance of a high transfer rate on the sender side. Therefore, TCP NJ+ improves the 
existing Timestamp-based available bandwidth estimation (TABE) algorithm, estimates the 
currently available bandwidth and ensures efficient transmission. In previous studies, TCP 
Jersey and TCP New Jersey predict the current available bandwidth using Formula (1).  
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In TCP Jersey, Rn refers to the available bandwidth as calculated at tn, when the nth ACK 

reached the sender, while tn-1 refers to the time at which the TCP sender received the (n-1)th 

ACK. In addition, RTT means the end-to-end round trip time as calculated at tn, whereas Ln 
refers to the size of the data packet acknowledged by the nth ACK. Rn-1 is the available 
bandwidth as calculated when the (n-1)th ACK is received, and helps prevent momentary 
changes in the network from resulting in sudden increase or reduction in the available 
bandwidth. As the basic assumption of the ABE algorithm is that under ideal conditions for the 
the link receiving an ACK, the pattern of an ACK returning to the sender is identical to the 
pattern of a data packet reaching the receiver, the available bandwidth from the sender to the 
receiver may be indirectly estimated. This estimation, however, is incorrect if ACK 
compression, ACK delays and/or ACK losses occur. 

In order to address this drawback, TCP New Jersey uses Formula (1) to measure the 
available bandwidth, where, in contrast to TCP Jersey, tn and tn-1 refer to the time at which the 
nth and (n-1)th packets are received, respectively. In other words, timestamp options are used to 
calculate the difference between the time at which the receiver received the nth data packet and 
the time at which it received the (n-1)th. Accordingly, if there is background traffic in the 
direction in which the ACK returns, TCP New Jersey ensures more appropriate estimates for 
available bandwidths. TCP New Jersey, however, still remains incapable of providing higher 
transfer rate depending on the conditions of a link. TCP NJ+ compares the two methods shown 
above and selects a higher value, redressing the issue of the bandwidth estimation relying on 
one link only. It thereby prevents a decline in the transfer rate due to unidirectional 
background traffic and ensures higher transfer rate. 

If the link transmitting data and the link receiving ACKs have different available 
bandwidths and delays in Fig. 1, the data reception interval and ACK reception interval may 
differ depending on the background traffic present in each link. Effective measurement of 
bandwidths, therefore, requires consideration of the conditions of the bidirectional link. Fig. 2 
illustrates the procedure for the estimation of the available bandwidth used when the sender in 
TCP NJ+ receives an ACK containing the timestamp option. 
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Fig. 1. MABE Algorithm Scenario in the Asymmetric Network 

 

0
0

,
0

,
0

,
0

1

←
←

r
t

s
t

r
R

s
R

n

))/(()( 11 RTTttLRRTTR snsnnsnsn +−+×← −−

Procedure:
/* ACK packet arrived at the sender */
if(timestamp)

end if

Initialization:

/* ABE based on ACK packet inter arrival time */
))/(()( 11 RTTttLRRTTR rnrnnrnrn +−+×← −−

),max( rnsnn RRR ←
/* ABE based on data packet inter arrival time */

/* maximum value of two estimations */
1+← nn

1:
2:
3:

4:
5:
6:

7:
8:
9:

10:

1:

2:

 
Fig. 2. Maximized Available Bandwidth Estimation Algorithm 

 
RTT refers to the end-to-end round trip time as measured at tsn, while Ln means the length of 

the data packet referenced by the nth ACK. Rsn, therefore, refers to the available bandwidth as 
measured based on the ACK receiving rate. In addition, Rrn is the available bandwidth as 
measured when the receiver received nth ACK at trn, where trn-1 refers to the time at which it 
received the (n-1)th ACK. RTT refers to the end-to-end round trip time as measured at trn, while 
Ln means the length of the nth data packet. Put another way, Rrn is the available bandwidth 
resulting from the difference in time between the receiving of two data packets. TCP NJ+ then 
compares the two measured values, Rsn and Rrn, to use the higher value as the available 
bandwidth. It therefore prevents the size of the available bandwidth from decreasing due to the 
conditions of the link transmitting data packets only or the link transmitting ACKs only. It also 
ensures faster transfer rate recovery by acquiring the maximum value of the bandwidth when 
an RTO occurs. TCP NJ+ may address the issues with the bandwidth estimation of TCP New 
Jersey relying on the background traffic of one link by measuring and comparing the 
bandwidths of both links. 
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3.2 Effective Adjustment for Retransmission Timeout 
The second algorithm used in TCP NJ+, EASR, calculates the optimal congestion window 
(ownd) size based on MABE and uses it according to the cause of an RTO. EASR is designed 
to build on the algorithms used for TCP Jersey and TCP New Jersey and ensures a higher 
transfer rate. The TCP flow control revolves around the additive increase 
/multiplicative-decrease (AIMD) algorithm. That is, a TCP sender raises the data transfer rate 
by gradually increasing the size of the congestion window. If packet loss occurs, however, the 
RTO mechanism cuts the size of the congestion window down to 1, greatly reducing the data 
transfer rate. This mechanism, however, is problematic in that it misinterprets an RTO caused 
by a high BER as congestion and then reduces the transfer rate without reservation. In a 
wireless network where a high BER is common, in particular, this problem is widely known to 
cause TCP to experience performance degradation. This in turn calls for an algorithm to utilize 
an optimum congestion window value and maintain the transfer rate depending on the cause of 
the RTO. 
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TCP Jersey and TCP New Jersey use Formula (2) to calculate the optimum congestion 

window size, owndn. In this formula, seg_size refers to the size of the TCP packet, Rn refers to 
the bandwidth as estimated by ABE or TABE, and RTT means the end-to-end round trip time. 
If an RTO occurs with the transmission of the nth packet, TCP Jersey and TCP New Jersey 
determine if the cause of the RTO is network congestion or a high BER. The CW algorithm is 
used to determine the cause of the RTO occurrence. The CW algorithm is based on ECN and 
has seen wide use since it is introduced with the Random Early Detection (RED) [20] 
algorithm in the 1990’s [12]. The determination of the cause of the RTO based on the CW 
algorithm, therefore, does not lose its persuasiveness even in consideration of the actual 
network environment. After determining the cause of the RTO, the TCP Jersey or TCP New 
Jersey sender reduces the value of the congestion window size to 1 if the RTO is caused by 
network congestion, or changes the size to the optimum size, owndn, if it is caused by a high 
BER. 
 
01: if  (RTO expired) 
02: if  (Congestion Warning)  
03: /* if RTO due to congestion */ 
04:  cwnd = 1; 
05:  ssthresh = owndn; 
06: else  
07: /* if RTO due to BER */ 
08:  cwnd = owndn ; 
09:  ssthresh = owndn; 
10: end if 
11: end if 
 

(a)TCP NJ 

01: if  (RTO expired) 
02: if  (Congestion Warning)  
03: /* if RTO due to congestion */ 
04:  cwnd = 1; 
05:  ssthresh = owndn; 
06: else  
07: /* if RTO due to BER */ 
08:  cwnd = (owndn + owndn-1) / 2; 
09:  ssthresh = owndn; 
10: end if 
11: end if 

 
(b)TCP NJ+ EASR 

Fig. 3. Comparison between TCP NJ and TCP NJ+ 
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The optimum size of the congestion window as calculated here, however, is based on the 
available bandwidth as calculated when the state of the network link temporarily deteriorated. 
This is why the owndn value at the time of the high BER does not actually mean the optimum 
congestion window value. In other words, the RTO occurrence caused by a high BER differs 
from that caused by congestion and does not indicate the congestion of the link, it means that 
the bandwidth of the link is sufficiently available. The actual available bandwidth is higher 
than the measured value. This therefore calls for an algorithm for the calculation of the 
optimum congestion window size that takes into account the conditions existing prior to the 
high BER. 

For this reason, TCP NJ+ considers owndn-1, the value effective immediately prior to the 
RTO occurrence, and thereby ensures a higher transfer rate. Fig. 3 compares how TCP New 
Jersey and TCP NJ+ work in pseudo code. If RTO occurs, the TCP NJ+ sender determines the 
causse of the RTO. If the RTO is caused by network congestion, the sender reduces cwnd to 1, 
as with the case with TCP New Jersey, and uses the owndn value to set ssthresh. If, however, 
the RTO is caused by a high BER, TCP NJ+ uses the owndn value to set ssthresh and the mean 
between owndn and owndn-1 to set cwnd. The owndn-1 value is measured before the network 
event where the current link error causes the RTO, and therefore is higher than owndn. In other 
words, the mean between owndn and owndn-1 is obtained to prevent a sudden drop in ownd due 
to a link error. The use of a higher cwnd value than with TCP New Jersey ensures faster 
recovery from the RTO caused by a high BER.  

3.3 Handling BER Error Recovery 
BERR provides a mechanism to set the appropriate congestion window size and ssthresh value 
depending on the cause of a 3-DUPACKs if it occurs. TCP New Jersey provides the following 
recovery algorithm when the sender receives a 3-DUPACKs. The sender first determines the 
cause of the packet loss, and if the cause is congestion, it reduces ssthresh to owndn and 
compares cwnd with ssthresh to adjust it. That is, the current cwnd value is maintained if cwnd 
is lower than ssthresh, or the owndn value is used to cwnd if it is higher than ssthresh. On the 
other hand, the sender maintains the current cwnd and ssthresh values if the packet is lost by a 
high BER. 
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As the packet loss is caused by a high BER, not by congestion, however, the buffer of the 

router in the middle has space to store packets. As seen in Fig. 4, the failure to increase cwnd 
under no congestion, therefore, means a relative reduction in cwnd. TCP NJ+ uses the BERR 
algorithm to resolve this issue with TCP New Jersey. When TCP NJ+ sender has received a 
3-DUPACKs, the BERR algorithm works as follows: First, TCP NJ+ works as the same way 
as TCP New Jersey does if the packet loss is caused by congestion. Second, if a high BER 
caused the packet loss, ssthresh is set to owndn and cwnd is incremented by the MSS value. A 
3-DUPACKs occurred due to a high BER in TCP New Jersey prevents cwnd from increasing 
any more despite no congestion has occurred. TCP NJ+, therefore, increases cwnd by 1 
maximum segment size (MSS) in order to compensate for the increase in cwnd that have not 
been attained due to the high BER. This cwnd compensation algorithm ensures high transfer 
rate by fully utilizing the available bandwidth that has not been utilized due to the failure to 
expand cwnd. In a high BER network environment where packet loss occurs more often, in 
particular, TCP NJ+ obtains relatively higher cwnd values and ensures better performance 
than other wireless TCP approaches. Although the expansion of cwnd may seem more or less 
aggressive, the buffer space at the router does not run short as the packet loss is caused by a 
high BER. In addition, even if the receiver buffer is full of out-of-sequence packets, buffer 
overflow due to the expanded cwnd may be prevented as the buffer of the TCP receiver is 
flow-controlled by means of advertised window (awnd). The buffer of the router is also 
controlled by the CW mechanism. The downside effects of expanding cwnd, therefore, is 
countered by the above mechanisms. 
 

 
Fig. 5. Operation Flow Chart of both NJ and NJ+ 

 
TCP NJ+ proposes MABE, EASR and BERR. Fig. 5 compares in flow charts how TCP 

New Jersey and TCP NJ+ work. The three proposed algorithms allow TCP NJ+ to have higher 
data throughputs than TCP New Jersey as well as TCP proper. The performance gains of TCP 
NJ+ are obtained by compensating for the relatively low measured value of the congestion 
window if packet loss is caused by a high BER. This advantage of the congestion window 
compensation algorithm may ensure higher transfer rate than other TCP schemes. It also 
enhances the occupancy of the allocated bandwidth and makes effective use of it so that 
network resources are not wasted. 

4. Performance Evaluation 
We evaluate the performance of TCP NJ+ by showing the metrics, such as goodput, fairness, 
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and friendliness using the ns-2 simulator [23]. We experiment the proposed scheme in two 
network topologies, which are either simple or more realistic with various simulation 
parameters including the link bandwidth, the packet size, the propagation delay, and the queue 
size as shown in Table 1, that is referred to [21]. 

Table 1. Simulation parameters 

Bandwidth Packet Size Propagation Delay Queue Size 
Wired : 100MB 726byte Wired : 10~20ms 20~200 packets 
Wireless : 2MB  Wireless : 1ms  

4.1 Goodput Performance in Simple Wireless Links 

Goodput is the effective amount of data delivered through the network. It is a direct direction 
indicator of network performance. We evaluate the goodput of previous studies including TCP 
NJ+, TCP New Jersey, TCP Westwood, and TCP Reno on various wireless link error rates: 
0.1%, 1%, 2%, 3%, 4%, and 5% in the topology of Fig. 6.  
 

 
Fig. 6. Simulation topology 

 
The source (node S) is connected to the node BS via a 100 MB wired link with 45 ms 

propagation delay. The node BS is linked to the destination (node D) via a 2 MB wireless link 
with 1 ms propagation delay. The queue size of the wired link is set to 150 and the wireless 
link queue size is set to 20. The goodput result is shown in Fig. 7. 

Especially, in 5% wireless link error rate, TCP NJ+ highly outperforms TCP New Jersey by 
19% and TCP Westwood by 54%. Because the BERR and EASR are performed when the 
packet loss is caused by BER, the result shows that the higher wireless link error rate, the 
higher the goodput of TCP NJ+. 
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Fig. 7. Goodput vs. wireless link error rate 
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4.2 Goodput Performance with Bi-directional Background Traffic 
In TCP NJ+, the ABE algorithm ensures high throughput regardless of the background traffic 
pattern. And it achieves high performance in the congestive state of wireless links as we see it 
in simulation results. As illustrated in Fig. 8, we simulate the goodput of TCP NJ+, TCP New 
Jersey, Westwood, and Reno on various wireless link error rates (1%, 2%, 3%, 4%, and 5%) 
under three environments. One is forward link where data segments are transmitted has traffic. 
Another is reverse link where ACKs are traversed has traffic. The other is bi-directional 
background traffic which leads to congestion (congestive state), or not (non-congestive state). 
We trace arrival, departure, and dropped packets on wireless link (from node AP to node D) 
which has 1% wireless link error rate. 
 

 
Fig. 8. Simulation topology via background traffic direction 

 

The source (node S) is connected to Router 1 via a 100 MB wired link with 10 ms 
propagation delay. Router 1 is linked to Router 2 and Router 2 is linked to Router 3 via a 100 
MB wired link with 20 ms propagation delay. Router 3 is linked to AP via a 100 MB wired link 
with 20 ms propagation delay. AP is connected to destination (node D) via a 10 MB wireless 
link with 10 ms. The background traffic flows, from node FBSn to node FBDn (forward) and 
from node BBSn to node BBDn(reverse), and in bi-direction are FTP background traffic via a 
100 MB wired link with 10 ms delay. The number of background traffic nodes is changed from 
5 (non-congestive state) to 10 (congestive state). The queue size of the wired link is set to 200 
and the wireless link queue size is set to 20. We show the results of goodput and queue state for 
congestion status in the wireless queue. 
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The simulation results consist of forward, reverse, and bi-directional background traffic 

cases with congestive and non-congestive states including goodput, dropped packets, arrival 
and departure packets in the wireless queue. Results of the FTP forward background traffic are 
illustrated in Fig. 9 and Fig. 10. Fig. 9 represents the dropped packet number in the wireless 
queue, the arrival and departure packet number in wireless queue, and goodput result with 
forward background traffic, respectively, that are the results of the wireless queue for 
congestive state. Fig. 10 illustrates the same for non-congestive state. 

Fig. 9(b) shows that the wireless link suffers from network congestion because the number 
of departure packet is less than the number of arrival packet. So, the result describes that 
departure packet line is located under the arrival packet line. As shown in Fig. 9(a), the 
dropped packet number is larger than the one shown in Fig. 10(a) of non-congestive state. 
Therefore, we evaluate the proposed scheme in the wireless links with congestive and 
non-congestive conditions. Fig. 9(c) and Fig. 10(c) presents that the goodput of TCP NJ+ in 
forward link congestive and non-congestive state is the higher than any other TCP variant in 
the same network condition. Especially, TCP NJ+ outperforms New Jersey by 24% and 
Westwood by 75% in 5% wireless link error rate with forward background traffic for 
congestive or non-congestive states. TCP NJ+ shows higher performance than any other TCP 
scheme for the wireless links in congestive or non-congestive state. The reason why TCP NJ+ 
shows high performance is that TCP NJ+ achieves cwnd by MABE regardless of the 
background traffic pattern because it estimates the optimal (maximum) available bandwidth. If 
RTO due to BER occurs, the EASR mechanism inflates by reducing the cwnd more quickly 
than other TCP schemes. 
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KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008                               345 

 

0 50 100 150 200
0

500

1000

1500

2000

2500

 

Dropped Packet Number at Wireless Queue 
with Backward Traffic (Non-Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r 
(p

ac
ke

ts
)

Time (sec)  
(a) Dropped packet number in 

wireless queue 
 

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

140000

 

Arrival and Departure Packet Number at Wireless Queue
with Backward Traffic (Non-Congestive)

P
ac

ke
t N

um
be

r 
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(b) Arrival and departure packet 
number in wireless queue 

 

1 2 3 4 5
0

1000000

2000000

3000000

4000000

5000000

6000000

 

TCP Goodput vs. Error Rate with Backward Background Traffic
(Non-Congestive)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(c) Goodput vs. wireless link 
error rate with backward  

background traffic 
Fig. 12. Simulation with reverse background traffic (Non congestive state) 

 
Fig. 11 and Fig. 12 represent the simulation results with reverse background traffic. Fig. 11 

describes the dropped packet number in the wireless queue, the arrival and departure packet 
numbers in wireless queue, and goodput result with reverse background traffic, respectively, 
for the wireless queue in congestive state. Fig. 11 illustrates for the non-congestive state. 

Although the forward link is free, the performance of all TCP variants is decreased because 
the ACKs are not traversed back to the sender due to the reverse link congestion. In Fig. 11 (a, 
b) and Fig. 12(a, b), we simulate the same environments (congestive and non-congestive 
states) as in forward background traffic situation.  
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(e) Goodput vs. wireless link error rate with bi-directional background traffic 
Fig. 13. Simulation with bi-direction background traffic (Congestive state) 

 
The goodput result of the reverse background traffic in congestive state is illustrated in Fig. 

11(c). TCP NJ+ has 21% and 65% improvement over TCP New Jersey and Westwood, 
respectively in 5% wireless link error rate with reverse background traffic. In Fig. 11(b) and 
Fig. 12(b), the simulation results are plotted in the congestive state. Fig. 12(c) describes the 
simulation result of the reverse background traffic in non-congestive state. TCP NJ+ shows 
higher performance. 

The simulation results with bi-directional background traffic are illustrated in Fig. 13 and 
Fig. 14. We describe the forward wireless queue state in Fig. 13(a, c) and the reverse wireless 
queue state (Fig. 13(b, d)) in congestive state. Fig. 13(e) shows the goodput result of TCP NJ+ 
in congestive state. We represent the forward wireless queue state (Fig. 14(a, c)) and the 
reverse wireless queue state (Fig. 14(b, d)) in non-congestive state. Fig. 14(e) illustrates the 
goodput result of TCP NJ+ in non-congestive state. In Fig. 13(e) and Fig. 14(e), TCP NJ+ 
outperforms TCP New Jersey by 16% and Westwood by 280% in 5% wireless link error rate 
with bi-directional background traffic. The simulation results show that TCP NJ+ achieves 
higher goodput than New Jersey and Westwood regardless of the background traffic patterns 
(forward, reverse, and bi-directional) for the wireless links in congestive or non-congestive 
state. Especially, it is robust to congestive state. 
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(c) Arrival and departure packet number 

in forward wireless queue 
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(e) Goodput vs. wireless link error rate with bi-directional background traffic 

Fig. 14. Simulation with bi-direction background traffic (Non Congestive state) 

4.3 Fairness Evaluation 
Fairness is also an essential measure of TCP performance evaluation. It is the bandwidth 
allocation measure for the multiple connections of the same TCP. We use the Jain's fairness 
index proposed in [22] in order to show the fairness of TCP NJ+, New Jersey, Westwood, and 
Reno on various link error rates using the topology in Fig. 15. 
 

 
Fig. 15. Fairness simulation topology 
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 Given 10 sources are transferred to 10 destinations by using same TCP scheme. The Jain's 
fairness index function is expressed in Formula (3) 
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Where F(x) is the fairness index of x flow. xi is the throughput of i-th flow, and n is the 

number of connections. F(x) ranges from 1/n to 1.0. A perfectly fair bandwidth allocation 
results in a fairness index F(x) of 1.0. The fairness evaluation results are summarized in Table 
2.  In conclusion, TCP NJ+ satisfies good fairness like the other TCP variants. 

Table 2. Fairness of TCP schemes vs. link error rate 

Error Rate(%) NJ+ NJ Westwood Reno 

0.0 0.9999 0.9999 1.0000 1.0000 

0.1 0.9999 0.9999 0.9999 0.9998 

0.5 0.9999 0.9999 0.9999 0.9986 

1.0 0.9999 0.9999 0.9998 0.9989 

5.0 0.9994 0.9994 0.9964 0.9980 

10 0.9903 0.9904 0.9811 0.9875 

4.4 Friendliness Evaluation 

 
Fig. 16. Friendliness simulation topology 

 

Friendliness is a metric to measure whether TCP schemes are able to coexist with other TCP 
variants and does not cause them starvation. In low-bandwidth network with many TCP 
connections, TCP NJ+ may affect the throughput degradation of other TCP connections. 
Consequently, it causes TCP global synchronization. TCP NJ+ compensates cwnd when the 
packet loss is detected, however, it does not starve other TCPs in the same network as you see 
the friendliness result. To verify the friendliness of TCP NJ+, we construct the simulation 
topology, where TCP NJ+ coexists with TCP Reno. The topology is presented in Fig. 16. Here 
the wireless link error rate is set to 1%. There are 10 pairs of connections sharing the 1MB per 
connection ideally. During the simulation, the number of TCP Reno connections is changed 
from 0 to 10 and the corresponding number of TCP NJ+ flows is changed from 10 to 0. The 
results of the friendliness are shown in Fig. 17. According to the simulation results, TCP Reno 
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uses the bandwidth for 0.5MB per each connection because of the degradation of the 
throughput in wireless networks. TCP NJ+ achieves average bandwidth for 1.1MB per each 
connection because it is designed to perform better in wireless networks. Hence, the 
friendliness of TCP NJ+ is satisfied and it cannot reduce the throughput of other TCP 
connections in the same network. 
 

 
Fig. 17. Results of friendliness 

5. Conclusion 
We have proposed TCP NJ+ which enhances the performance of TCP New Jersey. Three 
effective mechanisms are proposed in TCP NJ+. First, the maximized ABE algorithm 
guarantees significant throughput regardless of the background traffic pattern because it 
estimates the optimal (maximum) available bandwidth. Second, when the packet loss caused 
by BER occurs, the BERR mechanism makes the reduced cwnd to be increased speedily. Third, 
if RTO caused by BER occurs, the EASR mechanism inflates the cwnd more quickly than 
other TCP schemes. 

Simulation results demonstrate that TCP NJ+ improves the performance even when 
wireless link error rates increase. Particularly, TCP NJ+ outperforms New Jersey by 19% and 
Westwood by 54% in 5% wireless link error rate with no cross-traffic. Under a 5% wireless 
link error rate with background traffic, TCP NJ+ achieves 27% and 52% enhancement over 
TCP New Jersey and Westwood, respectively. In addition, the fairness and friendliness are 
also satisfied and TCP NJ+ does not starve other TCP variants, although it is more aggressive 
than any other TCP variants. In conclusion, TCP NJ+ with the maximized ABE, handling BER 
error recovery, and effective adjustment of sending rate for RTO mechanisms is robust to high 
BER environments, shows significant performance improvements. 
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