
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 333
Copyright ⓒ 2008 KSII

This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC (Information
Technology Research Center) support program supervised by the IITA (Institute of Information Technology
Advancement) (IITA-2008-(C1090-0801-0046)).

DOI: 10.3837/tiis.2008.06.004

NJ+: An Efficient Congestion Control
Mechanism for Wireless Networks

Jaehyung Lee1, Jungrae Kim1, Minu Park1, Jahwan Koo2, and Hyunseung Choo1

1Sungkyunkwan UniversitySchool of Information and Communication Engineering, Korea
[e-mail: jhyunglee@skku.edu, witjung@ece.skku.ac.kr, minupark@skku.edu, choo@skku.edu]

2Computer Sciences Department University of Wisconsin-Madison, USA
[e-mail: jhkoo@cs.wisc.edu]

*Corresponding author: Hyunseung Choo

Received November 11, 2008; revised December 8, 2008; accepted December 9, 2008;
published December 25, 2008

Abstract

Transmission control protocols have to overcome common problems in wireless networks.
TCP employing both packet loss discrimination mechanism and available bandwidth
estimation algorithm, known as the good existing solution, shows significant performance
enhancement in wireless networks. For instance, TCP New Jersey which exhibits high
throughput in wireless networks intends to improve TCP performance by using available
bandwidth estimation and congestion warning. Even though it achieves 17% and 85%
improvements in terms of goodput over TCP Westwood and TCP Reno, respectively, we
further improve it by exploring maximized available bandwidth estimation, handling
bit-error-rate error recovery, and effective adjustment of sending rate for retransmission
timeout. Hence, we propose TCP NJ+, showing that for up to 5% packet loss rate, it
outperforms other TCP variants by 19% to 104% in terms of goodput when the network is in
bi-directional background traffic.

Keywords: Transport control protocol (TCP), congestion control, congestion, wireless link
bit error rate (BER), retransmission timeout (RTO), TCP New Jersey

334 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

1. Introduction

Transmission control protocol (TCP) provides reliable data transmission in wired networks
[1][2]. However, TCP in wireless networks, such as wireless LANs, mobile, ad hoc networks,
cellular networks, and wireless mesh networks, suffers from the repeated packet losses due to
generic characteristics including limited bandwidth, high bit-error-rate (BER), handover,
channel interference, and fading which bring performance degradation [3]. Even though recent
researches focus on TCP performance during handover [4][5][6], the basic reason for the
performance degradation is that TCP congestion control [2] mechanism cannot discriminate
between the packet losses caused by wireless link errors and those caused by network
congestion, thus, reacting to these losses by reducing its congestion window (cwnd). Therefore,
these inappropriate reductions of the cwnd lead to unnecessary throughput degradation [7].

Over the last decade, a considerable number of studies have been conducted for the
improvement of wireless TCP performance with the advances of wireless infrastructure
technologies [8]. The wireless TCP schemes can be divided into split and end-to-end
approaches [9]. The split approach attempts to prevent the wireless portion from the wired
network by separating the TCP connection at the base station. The base station behaves as a
terminal (or a proxy) in both the wired and wireless portions. Both end hosts communicate
with the base station independently without knowledge of the other end. The drawback of split
approach is that it violates end-to-end TCP semantic. On the other hand, the end-to-end
approaches, such as TCP New Reno [10], Westwood [11], Jersey [12], and New Jersey [13],
deal with the route from the sender to the receiver as an end-to-end path, and the sender is
acknowledged directly by the receiver. The receiver provides feedback reflecting the network
condition, and the sender makes decisions for sending rate.

TCP Westwood improves addictive increase multiplicative decrease (AIMD) [14] which is
the conventional congestion window adjustment strategy of the regular TCP and intends to
improve TCP performance by effectively adjusting its transmission rate on the basis of the
available bandwidth estimation (ABE) algorithm at the sender. Although various TCP
Westwood variants are studied, they have the same concept of using ABE at the sender side.
On the other hand, TCP Jersey and New Jersey are based on the integration of the sender-side
ABE algorithm and the packet loss differentiated scheme in the intermediate router, thus,
resulting in higher throughput. TCP Westwood, TCP Jersey, and New Jersey are good
solutions in wireless networks assuming decent signaling environment. Nowadays, because
many wireless technologies including WiBro, Bluetooth, HSDPA, and so on, are mixed in our
airspace, BER is increased temporarily because of the interference with each other. Hence an
efficient method robust to the high BER environments is needed based on existing TCP
techniques.

Although TCP New Jersey achieves 17% and 85% improvements in goodput over TCP
Westwood and TCP Reno, respectively, we further increase TCP New Jersey performance by
employing maximized available bandwidth estimation (MABE), handling BER error recovery
(BERR), and effective adjustment of sending rate (EASR) for retransmission timeout
mechanisms. In MABE, maximum estimation value is selected between sender side estimation
and receiver side one. BERR and EASR reduce recovery time to compensate dropped sending
rate. Hence, we propose TCP NJ+, showing up to 5% high BER wireless link error rate, it
outperforms other TCP variants by 19% to 104% in terms of goodput regardless of
background traffic when the network is in bi-directional congestion. Although our proposed

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 335

schemes, such as BERR and EASR, implement based on TCP New Jersey, it is possible to
employ other TCP variants using packet loss discrimination schemes.

The rest of the paper is organized as follows: Section 2 reviews the related works of the
existing wired and wireless TCP schemes. Section 3 describes the improved mechanisms of
TCP NJ+ in detail. Section 4 presents performance evaluation via network simulator [15]
under various network conditions. The final section offers some concluding remarks.

2. Preliminaries
In this section, we describe typical transport protocols TCP Reno and New Reno in wired
networks. We also discuss TCPs in wireless networks. Here we describe TCP Westwood,
Jersey, and New Jersey which are well-known methods discussed in the literature.

2.1 TCP Reno
TCP Reno is a standard TCP for the effective and reliable data transfer in wired networks. In
the fast recovery algorithm [16] of TCP Reno which is the additional scheme comparing with
TCP Tahoe [1], when the packet loss is detected at the sender, it enters the congestion
avoidance phase instead of returning to the slow start phase after the lost packet is
retransmitted. Hence, fast recovery inflates the reduced transmission rate quickly.

The fast recovery algorithm takes care of a single packet loss effectively within one
congestion window(cwnd). But TCP Reno has a problem that if the multiple packet drops
occur, it would be forced to invoke multiple fast recovery algorithms repeatedly, slowing
down the sending rate continuously. Namely, it induces the unnecessary decreasing of sending
rate in wireless networks because the packet is dropped frequently.

2.2 TCP New Reno
TCP New Reno improves fast recovery that brings congestion avoidance phase after
performing fast retransmit [14] if the packet loss is detected by the sender. The multiple packet
losses force TCP Reno to invoke slow down the recovery of the dropped transmission rate.
TCP New Reno handles multiple packet losses for one congestion window. In TCP New Reno,
the fast recovery does not terminate until receiving of full ACK. When the sender receives 3
duplicate acknowledgements (3-DUPACKs), and each is the partial ACK, it just retransmits
the lost packet and does not terminate the fast recovery which does not reduce the cwnd. Hence,
the cwnd is decreased once when multiple packet losses are occurred. Namely, TCP New Reno
fast recovery takes care of the multiple packet drops from one cwnd.

However, the shortcoming of New Reno is that because it cannot distinguish the causes of
packet loss, more effective fast recovery cannot be performed. In addition, the reduction of
sending rate to use the AIMD mechanism is to invoke the dropping of throughput in wireless
networks where the multiple packet loss usually happens.

2.3 TCP Westwood
TCP Westwood is a wireless TCP using end-to-end proactive congestion control. TCP
Westwood estimates the current network bandwidth at sender side. The sender estimates the
network bandwidth by exploiting the rate and pattern of returning ACK through the reverse
links. Upon detecting a packet loss, the sender adjusts the cwnd according to the estimation.
By employing this estimator it exhibits higher performance than other TCP variants such as
TCP Reno, New Reno, and SACK [17] in both the wired and wireless networks.

336 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

However, TCP Westwood does not distinguish the cause of packet loss. It will adjust the
transmission rate constantly, upon experiencing the packet loss. Therefore it decreases the
throughput in high BER wireless networks. It is a problem that the accuracy of estimated
available bandwidth depends on the network condition which is changed based on the network
traffic in links. In addition, it infringes on the other connection's bandwidth when the multiple
connections share one link. Hence, the problem of TCP Westwood is how accurately it
estimates the rate.

2.4 TCP Jersey
TCP Jersey is employed to improve performance in wireless networks including congestion
warning (CW) mechanism that differentiates the packet loss by network congestion between
the packet loss by wireless link error and ABE algorithm. When the ACK packet arrives at the
sender, the ABE algorithm computes the current available bandwidth based on the time
interval of ACK packets. The optimized window (ownd) is calculated based on this estimation
when the packet loss is detected.

CW is an intermediate router mechanism based on explicit congestion notification (ECN)
scheme [18]. Besides the ECN, the CW is set to a threshold with fewer parameter settings at
the intermediate router that shall mark all the packets when the average queue length exceeds
the threshold. The sender who receives the marked packets decreases its cwnd, otherwise it
maintains the current cwnd. CW does not detect the congestion in the link layer. However, the
packet loss caused by the link layer congestion handles the link layer retransmission and the
rate control in the TCP sender-side.

2.5 TCP New Jersey
TCP New Jersey improves the ABE algorithm using the TCP Jersey. It adjusts slow start
threshold (ssthreshold) based on the estimation which is calculated by ABE algorithm. TCP
Jersey and New Jersey consist of two key components, the ABE algorithm and the CW
mechanism, that helps the sender effectively differentiate the cause of packet loss at
intermediate router. TCP New Jersey sender estimates the current available bandwidth based
on the packet interarrival time on the receiver. TCP New Jersey is robust to background traffic
in reverse links because of timestamp-based ABE.

However, TCP New Jersey experiences the degradation of throughput depending on
background traffic pattern such as congestion in the forward link and bi-directional
background traffic. And it cannot increase the reduced cwnd according to the cause of packet
loss effectively. Consequently, when the packet loss occurs consistently because of high BER
in wireless networks, it may decrease the throughput due to the reason that is mentioned
above.

3. The Proposed Scheme
TCP New Jersey proposed a timestamp-based available bandwidth estimation algorithm. As
TCP New Jersey, however, considers the state of one link only, it is not without a flaw that
unidirectional background traffic determines the data throughput. TCP New Jersey has
another drawback that it is incapable of effective throughput recovery from TCP packet loss.
In particular, packet loss caused by a high BER, as opposed to that caused by congestion,
requires an effective recovery algorithm. In this respect, TCP NJ+ proposes a mechanism
designed to maintain a high data throughput without compromising the fairness of the
proposed algorithm and effectively recover the throughput from a reduction due to packet loss

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 337

by comparing the available bandwidths of a bidirectional link and securing an available
bandwidth in a more aggressive manner. TCP NJ+ consists of three algorithms. MABE is an
algorithm designed to measure and compare available bandwidths based on the ACK
receiving time and data receiving time and aggressively calculate the available bandwidth.
EASR, then, effectively handles the reduced transfer rate depending on the results of MABE
when an RTO occurs. Lastly, BERR is capable of effectively compensating for the reduction
of the congestion window size when packet loss occurs due to a high BER.

3.1 Maximized Available Bandwidth Estimation (MABE)
The calculation of an available bandwidth appropriate for network conditions is essential to
the maintenance of a high transfer rate on the sender side. Therefore, TCP NJ+ improves the
existing Timestamp-based available bandwidth estimation (TABE) algorithm, estimates the
currently available bandwidth and ensures efficient transmission. In previous studies, TCP
Jersey and TCP New Jersey predict the current available bandwidth using Formula (1).

)(1

1

RTTtt
LRRTTR

nn

nn
n +−

+×
=

−

− (1)

In TCP Jersey, Rn refers to the available bandwidth as calculated at tn, when the nth ACK

reached the sender, while tn-1 refers to the time at which the TCP sender received the (n-1)th

ACK. In addition, RTT means the end-to-end round trip time as calculated at tn, whereas Ln
refers to the size of the data packet acknowledged by the nth ACK. Rn-1 is the available
bandwidth as calculated when the (n-1)th ACK is received, and helps prevent momentary
changes in the network from resulting in sudden increase or reduction in the available
bandwidth. As the basic assumption of the ABE algorithm is that under ideal conditions for the
the link receiving an ACK, the pattern of an ACK returning to the sender is identical to the
pattern of a data packet reaching the receiver, the available bandwidth from the sender to the
receiver may be indirectly estimated. This estimation, however, is incorrect if ACK
compression, ACK delays and/or ACK losses occur.

In order to address this drawback, TCP New Jersey uses Formula (1) to measure the
available bandwidth, where, in contrast to TCP Jersey, tn and tn-1 refer to the time at which the
nth and (n-1)th packets are received, respectively. In other words, timestamp options are used to
calculate the difference between the time at which the receiver received the nth data packet and
the time at which it received the (n-1)th. Accordingly, if there is background traffic in the
direction in which the ACK returns, TCP New Jersey ensures more appropriate estimates for
available bandwidths. TCP New Jersey, however, still remains incapable of providing higher
transfer rate depending on the conditions of a link. TCP NJ+ compares the two methods shown
above and selects a higher value, redressing the issue of the bandwidth estimation relying on
one link only. It thereby prevents a decline in the transfer rate due to unidirectional
background traffic and ensures higher transfer rate.

If the link transmitting data and the link receiving ACKs have different available
bandwidths and delays in Fig. 1, the data reception interval and ACK reception interval may
differ depending on the background traffic present in each link. Effective measurement of
bandwidths, therefore, requires consideration of the conditions of the bidirectional link. Fig. 2
illustrates the procedure for the estimation of the available bandwidth used when the sender in
TCP NJ+ receives an ACK containing the timestamp option.

338 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

Receiver

Rsn

Rrn

Sender

Time stamp
tn-1

Time stamp
tn

Intermediate Router

Data Segment

ACK

Remained Buf fer Space

Fig. 1. MABE Algorithm Scenario in the Asymmetric Network

0
0

,
0

,
0

,
0

1

←
←

r
t

s
t

r
R

s
R

n

))/(()(11 RTTttLRRTTR snsnnsnsn +−+×← −−

Procedure:
/* ACK packet arrived at the sender */
if(timestamp)

end if

Initialization:

/* ABE based on ACK packet inter arrival time */
))/(()(11 RTTttLRRTTR rnrnnrnrn +−+×← −−

),max(rnsnn RRR ←
/* ABE based on data packet inter arrival time */

/* maximum value of two estimations */
1+← nn

1:
2:
3:

4:
5:
6:

7:
8:
9:

10:

1:

2:

Fig. 2. Maximized Available Bandwidth Estimation Algorithm

RTT refers to the end-to-end round trip time as measured at tsn, while Ln means the length of

the data packet referenced by the nth ACK. Rsn, therefore, refers to the available bandwidth as
measured based on the ACK receiving rate. In addition, Rrn is the available bandwidth as
measured when the receiver received nth ACK at trn, where trn-1 refers to the time at which it
received the (n-1)th ACK. RTT refers to the end-to-end round trip time as measured at trn, while
Ln means the length of the nth data packet. Put another way, Rrn is the available bandwidth
resulting from the difference in time between the receiving of two data packets. TCP NJ+ then
compares the two measured values, Rsn and Rrn, to use the higher value as the available
bandwidth. It therefore prevents the size of the available bandwidth from decreasing due to the
conditions of the link transmitting data packets only or the link transmitting ACKs only. It also
ensures faster transfer rate recovery by acquiring the maximum value of the bandwidth when
an RTO occurs. TCP NJ+ may address the issues with the bandwidth estimation of TCP New
Jersey relying on the background traffic of one link by measuring and comparing the
bandwidths of both links.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 339

3.2 Effective Adjustment for Retransmission Timeout
The second algorithm used in TCP NJ+, EASR, calculates the optimal congestion window
(ownd) size based on MABE and uses it according to the cause of an RTO. EASR is designed
to build on the algorithms used for TCP Jersey and TCP New Jersey and ensures a higher
transfer rate. The TCP flow control revolves around the additive increase
/multiplicative-decrease (AIMD) algorithm. That is, a TCP sender raises the data transfer rate
by gradually increasing the size of the congestion window. If packet loss occurs, however, the
RTO mechanism cuts the size of the congestion window down to 1, greatly reducing the data
transfer rate. This mechanism, however, is problematic in that it misinterprets an RTO caused
by a high BER as congestion and then reduces the transfer rate without reservation. In a
wireless network where a high BER is common, in particular, this problem is widely known to
cause TCP to experience performance degradation. This in turn calls for an algorithm to utilize
an optimum congestion window value and maintain the transfer rate depending on the cause of
the RTO.

sizeseg
RRTTownd n

n _
×

= (2)

TCP Jersey and TCP New Jersey use Formula (2) to calculate the optimum congestion

window size, owndn. In this formula, seg_size refers to the size of the TCP packet, Rn refers to
the bandwidth as estimated by ABE or TABE, and RTT means the end-to-end round trip time.
If an RTO occurs with the transmission of the nth packet, TCP Jersey and TCP New Jersey
determine if the cause of the RTO is network congestion or a high BER. The CW algorithm is
used to determine the cause of the RTO occurrence. The CW algorithm is based on ECN and
has seen wide use since it is introduced with the Random Early Detection (RED) [20]
algorithm in the 1990’s [12]. The determination of the cause of the RTO based on the CW
algorithm, therefore, does not lose its persuasiveness even in consideration of the actual
network environment. After determining the cause of the RTO, the TCP Jersey or TCP New
Jersey sender reduces the value of the congestion window size to 1 if the RTO is caused by
network congestion, or changes the size to the optimum size, owndn, if it is caused by a high
BER.

01: if (RTO expired)
02: if (Congestion Warning)
03: /* if RTO due to congestion */
04: cwnd = 1;
05: ssthresh = owndn;
06: else
07: /* if RTO due to BER */
08: cwnd = owndn ;
09: ssthresh = owndn;
10: end if
11: end if

(a)TCP NJ

01: if (RTO expired)
02: if (Congestion Warning)
03: /* if RTO due to congestion */
04: cwnd = 1;
05: ssthresh = owndn;
06: else
07: /* if RTO due to BER */
08: cwnd = (owndn + owndn-1) / 2;
09: ssthresh = owndn;
10: end if
11: end if

(b)TCP NJ+ EASR

Fig. 3. Comparison between TCP NJ and TCP NJ+

340 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

The optimum size of the congestion window as calculated here, however, is based on the
available bandwidth as calculated when the state of the network link temporarily deteriorated.
This is why the owndn value at the time of the high BER does not actually mean the optimum
congestion window value. In other words, the RTO occurrence caused by a high BER differs
from that caused by congestion and does not indicate the congestion of the link, it means that
the bandwidth of the link is sufficiently available. The actual available bandwidth is higher
than the measured value. This therefore calls for an algorithm for the calculation of the
optimum congestion window size that takes into account the conditions existing prior to the
high BER.

For this reason, TCP NJ+ considers owndn-1, the value effective immediately prior to the
RTO occurrence, and thereby ensures a higher transfer rate. Fig. 3 compares how TCP New
Jersey and TCP NJ+ work in pseudo code. If RTO occurs, the TCP NJ+ sender determines the
causse of the RTO. If the RTO is caused by network congestion, the sender reduces cwnd to 1,
as with the case with TCP New Jersey, and uses the owndn value to set ssthresh. If, however,
the RTO is caused by a high BER, TCP NJ+ uses the owndn value to set ssthresh and the mean
between owndn and owndn-1 to set cwnd. The owndn-1 value is measured before the network
event where the current link error causes the RTO, and therefore is higher than owndn. In other
words, the mean between owndn and owndn-1 is obtained to prevent a sudden drop in ownd due
to a link error. The use of a higher cwnd value than with TCP New Jersey ensures faster
recovery from the RTO caused by a high BER.

3.3 Handling BER Error Recovery
BERR provides a mechanism to set the appropriate congestion window size and ssthresh value
depending on the cause of a 3-DUPACKs if it occurs. TCP New Jersey provides the following
recovery algorithm when the sender receives a 3-DUPACKs. The sender first determines the
cause of the packet loss, and if the cause is congestion, it reduces ssthresh to owndn and
compares cwnd with ssthresh to adjust it. That is, the current cwnd value is maintained if cwnd
is lower than ssthresh, or the owndn value is used to cwnd if it is higher than ssthresh. On the
other hand, the sender maintains the current cwnd and ssthresh values if the packet is lost by a
high BER.

C
on

ge
st

io
n

W
in

do
w

 S
iz

e

Time

Slow
Start

Congestion
Avoidance

Receive dupack without
congestion warning

During 1 window

{Jersey, NJ} ;
Keep cwnd despite of

no congestion

Fig. 4. Problem When the Sender Receive dupack without congestion warning

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 341

As the packet loss is caused by a high BER, not by congestion, however, the buffer of the

router in the middle has space to store packets. As seen in Fig. 4, the failure to increase cwnd
under no congestion, therefore, means a relative reduction in cwnd. TCP NJ+ uses the BERR
algorithm to resolve this issue with TCP New Jersey. When TCP NJ+ sender has received a
3-DUPACKs, the BERR algorithm works as follows: First, TCP NJ+ works as the same way
as TCP New Jersey does if the packet loss is caused by congestion. Second, if a high BER
caused the packet loss, ssthresh is set to owndn and cwnd is incremented by the MSS value. A
3-DUPACKs occurred due to a high BER in TCP New Jersey prevents cwnd from increasing
any more despite no congestion has occurred. TCP NJ+, therefore, increases cwnd by 1
maximum segment size (MSS) in order to compensate for the increase in cwnd that have not
been attained due to the high BER. This cwnd compensation algorithm ensures high transfer
rate by fully utilizing the available bandwidth that has not been utilized due to the failure to
expand cwnd. In a high BER network environment where packet loss occurs more often, in
particular, TCP NJ+ obtains relatively higher cwnd values and ensures better performance
than other wireless TCP approaches. Although the expansion of cwnd may seem more or less
aggressive, the buffer space at the router does not run short as the packet loss is caused by a
high BER. In addition, even if the receiver buffer is full of out-of-sequence packets, buffer
overflow due to the expanded cwnd may be prevented as the buffer of the TCP receiver is
flow-controlled by means of advertised window (awnd). The buffer of the router is also
controlled by the CW mechanism. The downside effects of expanding cwnd, therefore, is
countered by the above mechanisms.

Fig. 5. Operation Flow Chart of both NJ and NJ+

TCP NJ+ proposes MABE, EASR and BERR. Fig. 5 compares in flow charts how TCP

New Jersey and TCP NJ+ work. The three proposed algorithms allow TCP NJ+ to have higher
data throughputs than TCP New Jersey as well as TCP proper. The performance gains of TCP
NJ+ are obtained by compensating for the relatively low measured value of the congestion
window if packet loss is caused by a high BER. This advantage of the congestion window
compensation algorithm may ensure higher transfer rate than other TCP schemes. It also
enhances the occupancy of the allocated bandwidth and makes effective use of it so that
network resources are not wasted.

4. Performance Evaluation
We evaluate the performance of TCP NJ+ by showing the metrics, such as goodput, fairness,

342 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

and friendliness using the ns-2 simulator [23]. We experiment the proposed scheme in two
network topologies, which are either simple or more realistic with various simulation
parameters including the link bandwidth, the packet size, the propagation delay, and the queue
size as shown in Table 1, that is referred to [21].

Table 1. Simulation parameters

Bandwidth Packet Size Propagation Delay Queue Size
Wired : 100MB 726byte Wired : 10~20ms 20~200 packets
Wireless : 2MB Wireless : 1ms

4.1 Goodput Performance in Simple Wireless Links

Goodput is the effective amount of data delivered through the network. It is a direct direction
indicator of network performance. We evaluate the goodput of previous studies including TCP
NJ+, TCP New Jersey, TCP Westwood, and TCP Reno on various wireless link error rates:
0.1%, 1%, 2%, 3%, 4%, and 5% in the topology of Fig. 6.

Fig. 6. Simulation topology

The source (node S) is connected to the node BS via a 100 MB wired link with 45 ms

propagation delay. The node BS is linked to the destination (node D) via a 2 MB wireless link
with 1 ms propagation delay. The queue size of the wired link is set to 150 and the wireless
link queue size is set to 20. The goodput result is shown in Fig. 7.

Especially, in 5% wireless link error rate, TCP NJ+ highly outperforms TCP New Jersey by
19% and TCP Westwood by 54%. Because the BERR and EASR are performed when the
packet loss is caused by BER, the result shows that the higher wireless link error rate, the
higher the goodput of TCP NJ+.

1 2 3 4 5
0

500000

1000000

1500000

2000000

G
oo

dp
ut

(b
yt

e/
se

c)

Wireless Error Rate(%)

 NJ+

 NJ

 Westwood

 Reno

Fig. 7. Goodput vs. wireless link error rate

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 343

4.2 Goodput Performance with Bi-directional Background Traffic
In TCP NJ+, the ABE algorithm ensures high throughput regardless of the background traffic
pattern. And it achieves high performance in the congestive state of wireless links as we see it
in simulation results. As illustrated in Fig. 8, we simulate the goodput of TCP NJ+, TCP New
Jersey, Westwood, and Reno on various wireless link error rates (1%, 2%, 3%, 4%, and 5%)
under three environments. One is forward link where data segments are transmitted has traffic.
Another is reverse link where ACKs are traversed has traffic. The other is bi-directional
background traffic which leads to congestion (congestive state), or not (non-congestive state).
We trace arrival, departure, and dropped packets on wireless link (from node AP to node D)
which has 1% wireless link error rate.

Fig. 8. Simulation topology via background traffic direction

The source (node S) is connected to Router 1 via a 100 MB wired link with 10 ms
propagation delay. Router 1 is linked to Router 2 and Router 2 is linked to Router 3 via a 100
MB wired link with 20 ms propagation delay. Router 3 is linked to AP via a 100 MB wired link
with 20 ms propagation delay. AP is connected to destination (node D) via a 10 MB wireless
link with 10 ms. The background traffic flows, from node FBSn to node FBDn (forward) and
from node BBSn to node BBDn(reverse), and in bi-direction are FTP background traffic via a
100 MB wired link with 10 ms delay. The number of background traffic nodes is changed from
5 (non-congestive state) to 10 (congestive state). The queue size of the wired link is set to 200
and the wireless link queue size is set to 20. We show the results of goodput and queue state for
congestion status in the wireless queue.

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

Dropped Packet Number at Wirleless Queue
with Forward Traffic (Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

(a) Dropped packet number in
wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

Arrival and Departure Packet Number at Wireless Queue
with Forward Traffic (Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(b) Arrival and departure packet
number in wireless queue

1 2 3 4 5
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

TCP Goodput vs. Error Rate with Forward Background Traffic
(Congesitve)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(c) Goodput vs. wireless link error
rate with forward background

traffic
Fig. 9. Simulation with forward background traffic (Congestive state)

344 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

Dropped Packet Number at Wirleless Queue
with Foward Traffic (Non-Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

(a) Dropped packet number in
wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

Arrival and Departure Packet Number at Wireless Queue
with Forward Traffic (Non-Congestive)

P
ac

ke
t N

um
be

r
(P

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(b) Arrival and departure packet
number in wireless queue

1 2 3 4 5
0

500000

1000000

1500000

2000000

2500000

3000000

TCP Goodput vs. Error Rate with Forward Background Traffic
(Non-Congesitve)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(c) Goodput vs. wireless link
error rate with forward background

traffic
Fig. 10. Simulation with forward background traffic (Non congestive state)

The simulation results consist of forward, reverse, and bi-directional background traffic

cases with congestive and non-congestive states including goodput, dropped packets, arrival
and departure packets in the wireless queue. Results of the FTP forward background traffic are
illustrated in Fig. 9 and Fig. 10. Fig. 9 represents the dropped packet number in the wireless
queue, the arrival and departure packet number in wireless queue, and goodput result with
forward background traffic, respectively, that are the results of the wireless queue for
congestive state. Fig. 10 illustrates the same for non-congestive state.

Fig. 9(b) shows that the wireless link suffers from network congestion because the number
of departure packet is less than the number of arrival packet. So, the result describes that
departure packet line is located under the arrival packet line. As shown in Fig. 9(a), the
dropped packet number is larger than the one shown in Fig. 10(a) of non-congestive state.
Therefore, we evaluate the proposed scheme in the wireless links with congestive and
non-congestive conditions. Fig. 9(c) and Fig. 10(c) presents that the goodput of TCP NJ+ in
forward link congestive and non-congestive state is the higher than any other TCP variant in
the same network condition. Especially, TCP NJ+ outperforms New Jersey by 24% and
Westwood by 75% in 5% wireless link error rate with forward background traffic for
congestive or non-congestive states. TCP NJ+ shows higher performance than any other TCP
scheme for the wireless links in congestive or non-congestive state. The reason why TCP NJ+
shows high performance is that TCP NJ+ achieves cwnd by MABE regardless of the
background traffic pattern because it estimates the optimal (maximum) available bandwidth. If
RTO due to BER occurs, the EASR mechanism inflates by reducing the cwnd more quickly
than other TCP schemes.

0 50 100 150 200
0

500

1000

1500

2000

2500

Dropped Packet Number at Wireless Queue
with Backward Traffic (Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)
(a) Dropped packet number in

wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

140000

Arrival and Departure Packet Number at Wireless Queue
with Backward Traffic (Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(b) Arrival and departure packet
number in wireless queue

1 2 3 4 5
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

TCP Goodput vs. Error Rate with Backward Background Traffic
(Congestive)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(c) Goodput vs. wireless link
error rate with backward

background traffic
Fig. 11. Simulation with reverse background traffic (Congestive state)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 345

0 50 100 150 200
0

500

1000

1500

2000

2500

Dropped Packet Number at Wireless Queue
with Backward Traffic (Non-Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)
(a) Dropped packet number in

wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

140000

Arrival and Departure Packet Number at Wireless Queue
with Backward Traffic (Non-Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(b) Arrival and departure packet
number in wireless queue

1 2 3 4 5
0

1000000

2000000

3000000

4000000

5000000

6000000

TCP Goodput vs. Error Rate with Backward Background Traffic
(Non-Congestive)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(c) Goodput vs. wireless link
error rate with backward

background traffic
Fig. 12. Simulation with reverse background traffic (Non congestive state)

Fig. 11 and Fig. 12 represent the simulation results with reverse background traffic. Fig. 11

describes the dropped packet number in the wireless queue, the arrival and departure packet
numbers in wireless queue, and goodput result with reverse background traffic, respectively,
for the wireless queue in congestive state. Fig. 11 illustrates for the non-congestive state.

Although the forward link is free, the performance of all TCP variants is decreased because
the ACKs are not traversed back to the sender due to the reverse link congestion. In Fig. 11 (a,
b) and Fig. 12(a, b), we simulate the same environments (congestive and non-congestive
states) as in forward background traffic situation.

0 50 100 150 200
0

500

1000

1500

2000

Dropped Packet Number at Forward Wireless Queue
with Both Traffic (Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

(a) Dropped packet number in forward
wireless queue

0 50 100 150 200
0

200

400

600

800

1000

1200

Dropped Packet Number at Backward Wireless Queue
with Both Traffic (Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)
(b) Dropped packet number in reverse

wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

Arrival and Departure Packet Number at Foward Wireless Queue
with Both Traffic (Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(c) Arrival and departure packet number

in forward wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

Arrival and Depature Packet Number at Backward Wireless Queue
with Both Traffic (Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(d) Arrival and departure packet number
in backward wireless queue

346 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

1 2 3 4 5
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

TCP Goodput vs. Error Rate with Both Background Traffic
(Congestive)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(e) Goodput vs. wireless link error rate with bi-directional background traffic
Fig. 13. Simulation with bi-direction background traffic (Congestive state)

The goodput result of the reverse background traffic in congestive state is illustrated in Fig.

11(c). TCP NJ+ has 21% and 65% improvement over TCP New Jersey and Westwood,
respectively in 5% wireless link error rate with reverse background traffic. In Fig. 11(b) and
Fig. 12(b), the simulation results are plotted in the congestive state. Fig. 12(c) describes the
simulation result of the reverse background traffic in non-congestive state. TCP NJ+ shows
higher performance.

The simulation results with bi-directional background traffic are illustrated in Fig. 13 and
Fig. 14. We describe the forward wireless queue state in Fig. 13(a, c) and the reverse wireless
queue state (Fig. 13(b, d)) in congestive state. Fig. 13(e) shows the goodput result of TCP NJ+
in congestive state. We represent the forward wireless queue state (Fig. 14(a, c)) and the
reverse wireless queue state (Fig. 14(b, d)) in non-congestive state. Fig. 14(e) illustrates the
goodput result of TCP NJ+ in non-congestive state. In Fig. 13(e) and Fig. 14(e), TCP NJ+
outperforms TCP New Jersey by 16% and Westwood by 280% in 5% wireless link error rate
with bi-directional background traffic. The simulation results show that TCP NJ+ achieves
higher goodput than New Jersey and Westwood regardless of the background traffic patterns
(forward, reverse, and bi-directional) for the wireless links in congestive or non-congestive
state. Especially, it is robust to congestive state.

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Dropped Packet Number at Foward Wireless Queue
with Both Traffic (Non-Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

(a) Dropped packet number in forward
wireless queue

0 50 100 150 200
0

200

400

600

800

1000

1200

Dropped Packet Number at Backward Wireless Queue
with Both Traffic (Non-Congestive)

D
ro

pp
ed

 P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

(b) Dropped packet number in reverse
wireless queue

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 347

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

Arrival and Departure Packet Number at Foward Wireless Queue
with Both Traffic (Non-Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(c) Arrival and departure packet number

in forward wireless queue

0 50 100 150 200
0

20000

40000

60000

80000

100000

120000

Arrival and Departure Packet Number at Backward Wireless Queue
with Both Traffic (Non-Congestive)

P
ac

ke
t N

um
be

r
(p

ac
ke

ts
)

Time (sec)

 Arrival
 Departure

(d) Arrival and departure packet number

in backward wireless queue

1 2 3 4 5
0

1000000

2000000

3000000

4000000

5000000

TCP Goodput vs. Error Rate with Both Background Traffic
(Non-Congestive)

G
oo

dp
ut

 (
by

te
/s

ec
)

Error Rate (%)

 NJ+
 NJ
 WW
 Reno

(e) Goodput vs. wireless link error rate with bi-directional background traffic

Fig. 14. Simulation with bi-direction background traffic (Non Congestive state)

4.3 Fairness Evaluation
Fairness is also an essential measure of TCP performance evaluation. It is the bandwidth
allocation measure for the multiple connections of the same TCP. We use the Jain's fairness
index proposed in [22] in order to show the fairness of TCP NJ+, New Jersey, Westwood, and
Reno on various link error rates using the topology in Fig. 15.

Fig. 15. Fairness simulation topology

348 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

 Given 10 sources are transferred to 10 destinations by using same TCP scheme. The Jain's
fairness index function is expressed in Formula (3)

)(
)(

)(2

2

∑
∑=

i

i

xn
x

xF (3)

Where F(x) is the fairness index of x flow. xi is the throughput of i-th flow, and n is the

number of connections. F(x) ranges from 1/n to 1.0. A perfectly fair bandwidth allocation
results in a fairness index F(x) of 1.0. The fairness evaluation results are summarized in Table
2. In conclusion, TCP NJ+ satisfies good fairness like the other TCP variants.

Table 2. Fairness of TCP schemes vs. link error rate

Error Rate(%) NJ+ NJ Westwood Reno

0.0 0.9999 0.9999 1.0000 1.0000

0.1 0.9999 0.9999 0.9999 0.9998

0.5 0.9999 0.9999 0.9999 0.9986

1.0 0.9999 0.9999 0.9998 0.9989

5.0 0.9994 0.9994 0.9964 0.9980

10 0.9903 0.9904 0.9811 0.9875

4.4 Friendliness Evaluation

Fig. 16. Friendliness simulation topology

Friendliness is a metric to measure whether TCP schemes are able to coexist with other TCP
variants and does not cause them starvation. In low-bandwidth network with many TCP
connections, TCP NJ+ may affect the throughput degradation of other TCP connections.
Consequently, it causes TCP global synchronization. TCP NJ+ compensates cwnd when the
packet loss is detected, however, it does not starve other TCPs in the same network as you see
the friendliness result. To verify the friendliness of TCP NJ+, we construct the simulation
topology, where TCP NJ+ coexists with TCP Reno. The topology is presented in Fig. 16. Here
the wireless link error rate is set to 1%. There are 10 pairs of connections sharing the 1MB per
connection ideally. During the simulation, the number of TCP Reno connections is changed
from 0 to 10 and the corresponding number of TCP NJ+ flows is changed from 10 to 0. The
results of the friendliness are shown in Fig. 17. According to the simulation results, TCP Reno

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 349

uses the bandwidth for 0.5MB per each connection because of the degradation of the
throughput in wireless networks. TCP NJ+ achieves average bandwidth for 1.1MB per each
connection because it is designed to perform better in wireless networks. Hence, the
friendliness of TCP NJ+ is satisfied and it cannot reduce the throughput of other TCP
connections in the same network.

Fig. 17. Results of friendliness

5. Conclusion
We have proposed TCP NJ+ which enhances the performance of TCP New Jersey. Three
effective mechanisms are proposed in TCP NJ+. First, the maximized ABE algorithm
guarantees significant throughput regardless of the background traffic pattern because it
estimates the optimal (maximum) available bandwidth. Second, when the packet loss caused
by BER occurs, the BERR mechanism makes the reduced cwnd to be increased speedily. Third,
if RTO caused by BER occurs, the EASR mechanism inflates the cwnd more quickly than
other TCP schemes.

Simulation results demonstrate that TCP NJ+ improves the performance even when
wireless link error rates increase. Particularly, TCP NJ+ outperforms New Jersey by 19% and
Westwood by 54% in 5% wireless link error rate with no cross-traffic. Under a 5% wireless
link error rate with background traffic, TCP NJ+ achieves 27% and 52% enhancement over
TCP New Jersey and Westwood, respectively. In addition, the fairness and friendliness are
also satisfied and TCP NJ+ does not starve other TCP variants, although it is more aggressive
than any other TCP variants. In conclusion, TCP NJ+ with the maximized ABE, handling BER
error recovery, and effective adjustment of sending rate for RTO mechanisms is robust to high
BER environments, shows significant performance improvements.

References
[1] J. Postel, “Transmission Control Protocol,” RFC 793, September 1981.
[2] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC2581, April 1999.
[3] F. Lefevre and G. Vivier, “Understanding TCP's Behavior over Wireless Links,” Symposium on

Communications Vehicular Technology 2000, pp.123-1302, November 2000.
[4] W. Liao, C.J. Kao, and C.H. Chien, “Improving TCP Performance in Mobile Networks,” IEEE

Transactions on Communications, Vol.53, No.4, pp.569-571, April 2005.

350 Lee et al.: NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

[5] C.Y. Ho, Y.C. Chan, and Y.C. Chen, An Effcient Mechanism of TCP-Vegas on Mobile IP
Networks,” IEEE INFOCOM, Vol.4, pp.2776-2780, March 2005.

[6] X. Wu, M.C. Chan, and A.L Ananda, “TCP HandOff: A Practical TCP Enhancement for
Heterogeneous Mobile Environments,” IEEE ICC, pp.6043-6048, June 2007.

[7] T. V. Lakshman and U. Madhow, “The Performance of TCP/IP for Networks with High
Bandwidth-delay Products and Random Loss,” IEEE/ACM Transactions on Networking, Vol.5,
No.3, pp.336-350, June 1997

[8] H. Elaarag, “Improving TCP Performance over Mobile Networks,” ACM Computing Surveys,
Vol.34, Issue.3, pp.357-374, September 2002.

[9] Y. Tian, K. Xu, and N. Ansari, “TCP in Wireless Environments: Prob-lems and Solutions,” IEEE
Radio Communications, Vol.43, Issue.3, pp.27-32, March 2005.

[10] S. Floyd and T. Henderson, “The New Reno Modification to TCP's Fast Recovery Algorithm,”
RFC 2582, April 1999.

[11] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, “TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless Links,” ACM/IEEE Mobile Computing and
Networking, pp.287-297, July 2001.

[12] K. Xu, Y.Tian, and N. Ansari, TCP-Jersey for Wireless IP Communications,” IEEE Journal of
Selected Areas in Communications, Vol.22, Issue.4, pp.747-756, May 2004.

[13] K. Xu, Y. Tian, and N. Ansari, “Improving TCP Performance in Integrated Wireless
Communications Networks,” Computer Networks, Vol.47, pp.219-237, February 2005.

[14] V. Jacobson, “Congestion Avoidance and Contol,” ACM SIGCOMM, Vol.18, pp.314-329, August
1988.

[15] UCB/LBNL/VINT Network Simulator [Online]Avilable: http://www.isi.edu/nsnam/ns
[16] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery

Algorithms,” RFC 2001, January 1997.
[17] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to The Selective

Acknowledgement Option for TCP,” RFC 2883, July 2000.
[18] S. Floyd, “TCP and Explicit Congestion Notification,” ACM Computer Communications Review,

Vol.24, No.5, pp.10-23, October 1994.
[19] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Performance,” RFC 1323,

May 1992.
[20] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance,”

IEEE/ACM Transactions on Networking, Vol.1 No.4, pp. 397-413, August 1993.
[21] C. Song, P.C. Cosman, and G.M. Voelker, “End-to-End Differentiation of Congestion and

Wireless Losses,” IEEE/ACM Transactions on Networking, Vol.11, pp.703-717, October 2003.
[22] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and Discrimination for

Resource Allocation in Shared Computer Systems,” DEC Research Report TR-301, September
1984.

Jaehyung Lee has received BS in computer education from Sungkyunkwan
University, Korea in 2007. Since 2007, he has been a research student from Networking
Laboratory at Graduate School of Information and Communication Engineering from
Sungkyunkwan University, Korea. Moreover, he is a research member with HCI
software platform development from the Intelligent HCI Convergence Research Center
(8-year research program) supported by the Ministry of Knowledge Economy (Korea)
under the Information Technology Research Center support program. His research
interests include congestion control algorithm and mobile wireless networks.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 6, DECEMBER 2008 351

Jungrae Kim has received BS in computer science from Inchon University, Korea in
2005, MS in Information and Communication Engineering from Sungkyunkwan
University, Korea. He was a research member with HCI software platform
development from the Intelligent HCI Convergence Research Center (8-year research
program) supported by the Ministry of Knowledge Economy (Korea) under the
Information Technology Research Center support program. Since 2008, he has been a
system engineer at Xener Systems. His research interests include congestion control
algorithm and mobile wireless networks.

Minu Park received a BS degree in computer science from Sungkyunkwan
University, Korea in 2007. Since 2007, he has joined the Telecommunication Network
Business of Samsung Electronics, and is also a research student from Networking
Laboratory at Graduate School of Information and Communication Engineering from
Sungkyunkwan University, Korea. Moreover, he is a research member with HCI
software platform development from the Intelligent HCI Convergence Research Center
(8-year research program) supported by the Ministry of Knowledge Economy (Korea)
under the Information Technology Research Center support program. His research
interests include service discovery, congestion control algorithm and mobile wireless
networks.

Jahwan Koo Jahwan Koo received the B.S., M.S. and Ph.D. degrees in Computer
Communication and Networking from Sungkyunkwan University (SKKU), South
Korea, in 1995, 1997, and 2006, respectively. For more than five years (from 1997 to
2002), he was a system engineer and infrastructure architect at Korea Information
Systems and LG CNS Co., Ltd. (initially LG-EDS), South Korea. For one and half
years, he joined at the School of Information and Communication Engineering, SKKU,
as a Research Professor. He authored Network Principles and Practices (Life & Books
Press, 2004), Understanding Information and Communication Technology (Life &
Books Press, 2005) and Internet QoS Differentiation (VDM Verlag Dr. Mueller e.K.,
2008). He is a member of ACM, IEEE, IAENG, KSII, etc. He is currently working as a
Postdoctoral Fellow at Computer Sciences Department, University of Winsconsin -
Madison, USA. His research interests include Internet Quality of Service, Network
Management, Network Security, and Information Technology Architecture.

Hyunseung Choo received a BS in mathematics from Sungkyunkwan University,
Korea in 1988. He received an MS in computer science from the University of Texas at
Dallas, USA in 1990, and a PhD in computer science from the University of Texas at
Arlington, USA in 1996. From 1997 to 1998, he was a patent examiner at Korean
Industrial Property Office. Since 1998, he has been with the School of Information and
Communication Engineering at Sungkyunkwan University, and he is an associate
professor and a director of Convergence Research Institute of the university. Since
2005, Dr. Choo is Director of the Intelligent HCI Convergence Research Center
(8-year research program) supported by the Ministry of Knowledge Economy (Korea)
under the Information Technology Research Center support program supervised by the
Institute of Information Technology Assessment. His research interests include
wired/wireless/optical embedded networking, mobile computing, and grid computing.
Dr. Choo has been Editor-in-Chief of the Journal of Korean Society for Internet
Information(KSII) for 3 years and journal editor of the “Journal of Communications
and Networks,” “ACM Transactions on Internet Technology,” “International Journal of
Mobile Communication,” and “Springer-Verlag Transactions on Computational
Science Journal” since 2006. He has published over 200 papers in international journals
and refereed conferences. Dr. Choo is a member of IEEE, ACM, and IEICE.

