• Title/Summary/Keyword: wireless channels

Search Result 692, Processing Time 0.025 seconds

Performance Improvement of Channel Access Control Method in Wireless Mesh Networks (무선 메쉬 네트워크에서 성능향상을 위한 채널접속 제어 방법)

  • Lee, Soon-Sik;Yun, Sang-Man;Lee, Sang-Wook;Jeon, Seong-Geun;Kim, Eung-Soo;Lee, Woo-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.572-580
    • /
    • 2010
  • The Wireless Mesh Network uses a wireless communication technology with transmission rates simular to a cable which is used as a backbone networks. The topology structure is in a Mesh form which resembles an Ad-hoc networks. However, a metric is needed in order to set the channel access control method to operate intentions and interior motions are different. In this document, an efficient channel for delivering datas to improve access controls to a wireless mesh networks. The improved performance of the proposed plan is for a hidden and exposed mesh client through an exclusive channels to perform a proposed and analyzed methods.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

Sensing Performance of Efficient Cyclostationary Detector with Multiple Antennas in Multipath Fading and Lognormal Shadowing Environments

  • Zhu, Ying;Liu, Jia;Feng, Zhiyong;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.162-171
    • /
    • 2014
  • Spectrum sensing is a key technical challenge for cognitive radio (CR). It is well known that multicycle cyclostationarity (MC) detection is a powerful method for spectrum sensing. However, a conventional MC detector is difficult to implement because of its high computational complexity. This paper considers reducing computational complexity by simplifying the test statistic of a conventional MC detector. On the basis of this simplification process, an improved MC detector is proposed. Compared with the conventional detector, the proposed detector has low-computational complexity and high-accuracy sensing performance. Subsequently, the sensing performance is further investigated for the cases of Rayleigh, Nakagami-m, Rician, and Rayleigh fading and lognormal shadowing channels. Furthermore, square-law combining (SLC) is introduced to improve the detection capability in fading and shadowing environments. The corresponding closed-form expressions of average detection probability are derived for each case by the moment generation function (MGF) and contour integral approaches. Finally, illustrative and analytical results show the efficiency and reliability of the proposed detector and the improvement in sensing performance by SLC in multipath fading and lognormal shadowing environments.

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

A Secure Medical Information Management System for Wireless Body Area Networks

  • Liu, Xiyao;Zhu, Yuesheng;Ge, Yu;Wu, Dajun;Zou, Beiji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.221-237
    • /
    • 2016
  • The wireless body area networks (WBANs) consist of wearable computing devices and can support various healthcare-related applications. There exist two crucial issues when WBANs are utilized for healthcare applications. One is the protection of the sensitive biometric data transmitted over the insecure wireless channels. The other is the design of effective medical management mechanisms. In this paper, a secure medical information management system is proposed and implemented on a TinyOS-based WBAN test bed to simultaneously address these two issues. In this system, the electronic medical record (EMR) is bound to the biometric data with a novel fragile zero-watermarking scheme based on the modified visual secret sharing (MVSS). In this manner, the EMR can be utilized not only for medical management but also for data integrity checking. Additionally, both the biometric data and the EMR are encrypted, and the EMR is further protected by the MVSS. Our analysis and experimental results demonstrate that the proposed system not only protects the confidentialities of both the biometric data and the EMR but also offers reliable patient information authentication, explicit healthcare operation verification and undeniable doctor liability identification for WBANs.

A Comparison of TDMA, Dirty Paper Coding, and Beamforming for Multiuser MIMO Relay Networks

  • Li, Jianing;Zhang, Jianhua;Zhang, Yu;Zhang, Ping
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • A two-hop multiple-input multiple-output (MIMO) relay network which comprises a multiple antenna source, an amplify-and-forward MIMO relay and many potential users are studied in this paper. Consider the achievable sum rate as the performance metric, a joint design method for the processing units of the BS and relay node is proposed. The optimal structures are given, which decompose the multiuser MIMO relay channel into several parallel single-input single-output relay channels. With these structures, the signal-to-noise ratio at the destination users is derived; and the power allocation is proved to be a convex problem. We also show that high sum rate can be achieved by pairing each link according to its magnitude. The sum rate of three broadcast strategies, time division multiple access (TDMA) to the strongest user, dirty paper coding (DPC), and beamforming (BF) are investigated. The sum rate bounds of these strategies and the sum capacity (achieved by DPC) gain over TDMA and BF are given. With these results, it can be easily obtained that how far away TDMA and BF are from being optimal in terms of the achievable sum rate.

Multi-Channel Time Division Scheduling for Beacon Frame Collision Avoidance in Cluster-tree Wireless Sensor Networks (클러스트-트리 무선센서네트워크에서 비콘 프레임 충돌 회피를 위한 멀티채널 시분할 스케줄링)

  • Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.107-114
    • /
    • 2017
  • In beacon-enabled mode, beacon collision is a significant problem for the scalability of cluster-tree wireless sensor networks. In this paper, multi-channel time division scheduling (MCTS) is proposed to prevent beacon collisions and provide scalability. A coordinator broadcasts a beacon frame, including information on allocated channels and time-slots, and a new node determines its own channel and time-slot. The performance of the proposed method is evaluated by comparing the proposed approach with a typical ZigBee. MCTS prevents beacon collisions in cluster-tree wireless sensor networks. It enables large-scale wireless sensor networks based on a cluster tree to be scalable and effectively constructed.

A Lightweight Integrity Authentication Scheme based on Reversible Watermark for Wireless Body Area Networks

  • Liu, Xiyao;Ge, Yu;Zhu, Yuesheng;Wu, Dajun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4643-4660
    • /
    • 2014
  • Integrity authentication of biometric data in Wireless Body Area Network (WBAN) is a critical issue because the sensitive data transmitted over broadcast wireless channels could be attacked easily. However, traditional cryptograph-based integrity authentication schemes are not suitable for WBAN as they consume much computational resource on the sensor nodes with limited memory, computational capability and power. To address this problem, a novel lightweight integrity authentication scheme based on reversible watermark is proposed for WBAN and implemented on a TinyOS-based WBAN test bed in this paper. In the proposed scheme, the data is divided into groups with a fixed size to improve grouping efficiency; the histogram shifting technique is adopted to avoid possible underflow or overflow; local maps are generated to restore the shifted data; and the watermarks are generated and embedded in a chaining way for integrity authentication. Our analytic and experimental results demonstrate that the integrity of biometric data can be reliably authenticated with low cost, and the data can be entirely recovered for healthcare applications by using our proposed scheme.

Novel UWB Transceiver for WBAN Networks: A Study on AWGN Channels

  • Zhao, Chengshi;Zhou, Zheng;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.11-21
    • /
    • 2010
  • A novel ultra-wideband (UWB) transceiver structure is presented to be used in wireless body area networks (WBANs). In the proposed structure, a data channel and a control channel are combined into a single transmission signal. In the signal, a modulation method mixing pulse position modulation and pulse amplitude modulation is proposed. A mathematical framework calculating the power spectrum density of the proposed pulse-based signal evaluates its coexistence with conventional radio systems. The transceiver structure is discussed, and the receiving performance is investigated in the additive white Gaussian noise channel. It is demonstrated that the proposed scheme is easier to match to the UWB emission mask than conventional UWB systems. The proposed scheme achieves the data rate requirement of WBAN; the logical control channel achieves better receiving performance than the logical data channel, which is useful for controlling and maintaining networks. The proposed scheme is also easy to implement.

Performance Analysis of Space-Time Transmit Diversity with Adaptive Equalizer in Multipath Channels (다중 경로 채널에서의 적응 등화기를 이용한 시공간 전송 다이버시티 성능 분석)

  • 박현석;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.629-634
    • /
    • 2002
  • The next generation of wireless communication system is expected to provide users with wireless multimedia services such as high speed internet access and wireless mobile computing. Depending on the Quality of Service(QoS) requirements and different applications per user, many wireless communication systems have been proposed. The simple decoding algorithm of space-time block coding is based on the assumption of flat fading channel, where no intersymbol interference exists. In this paper, we propose to combine space-time transmit diversity with adaptive equalizer. The proposed system effectively eliminates interference caused by multipath environment. Simulation results show that the proposed system provides improved bit error rate performance.