• Title/Summary/Keyword: wireless body area network

Search Result 131, Processing Time 0.026 seconds

WBAN MAC Protocols- Non-Saturation Modeling and Performance Analysis

  • Khan, Pervez;Ullah, Niamat;Kim, Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1462-1476
    • /
    • 2017
  • The current literature on discrete-time Markov chain (DTMC) based analysis of IEEE 802.15.6 MAC protocols for wireless body area networks (WBANs), do not consider the ACK timeout state, wherein the colliding nodes check the ill fate of their transmissions, while other contending nodes perform backoff check that slot as usual. In this paper, our DTMC model accurately captures the carrier sense multiple access with collision avoidance (CSMA/CA) mechanism of IEEE 802.15.6 medium access control (MAC) and allows the contending nodes performing backoff to utilize the ACK timeout slot during collisions. The compared rigorous results are obtained by considering a non-ideal channel in non-saturation conditions, and CSMA/CA parameters pertaining to UWB PHY of IEEE 802.15.6 MAC protocols.

Study on Wireless Body Area Network System Design Based on Transmission Rate (전송률을 고려한 WBAN 시스템 설계에 관한 연구)

  • Park, Joo-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.121-129
    • /
    • 2012
  • In this paper, we proposed WBAN system model to management an application that requires low rate data transfer in IEEE 802.15.4. We have to use different wireless sensor network technology to transfer different date rate and emergency message in medical application service. A suitable system model for WBAN and a WBAN MAC protocol in order to solve these existing system problems are proposed. Firstly, the priority queuing was applied to contention access period, and the system model which could guarantee transmission of a MAC command frame was proposed. Secondly, the MAC frame was newly defined to use the system model which was proposed above. Thirdly, WBAN CSMA/CA back-off algorithm based on data transmission rate was proposed to enhance data throughput and transmission probability of the data frame which does not have priority in the proposed WBAN system. The proposed algorithm is designed to be variable CSMA/CA algorithm parameter, depending on data rate. For the evaluation of WBAN CSMA/CA algorithm, we used Castalia. As a result of the simulation, it is found that the proposed system model can not only relieve loads of data processing, but also probability of collision was decreased.

Group Manchester Code Scheme for Medical In-body WBAN Systems (의료용 in-body WBAN 시스템을 위한 Group Manchester code 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10C
    • /
    • pp.597-604
    • /
    • 2011
  • In this paper, we propose group Manchester code (GM) modulation scheme for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group 6 (TG 6), and the related standardization is being progressed, Recently, in this Group, group pulse position modulation (GPPM), which can obtain data rate increase by grouping pulse position modulation (PPM) symbols, is proposed as a new modulation scheme for low-power operation of WBAN system. However, the conventional method suffers from BER performance degradation due to the absence of gray coding and its demodulation characteristics. Therefore, in this paper, we propose a modified GM scheme which groups Manchester code instead of PPM. In the proposed GM scheme, a low-complexity maximum likelihood (ML) demodulation method is employed in order to maximize the BER performances, Also, log likelihood ratio (LLR) decision method is proposed to employ the Turbo code as forward error correction (FEC), Finally, we verified that the proposed method has a good performance and is an appropriate scheme for in-body WBAN system through extensive performance evaluation.

Antenna Selection Scheme Using Noncoherent Receivers for Off-Body High Data Rate WBAN (신체 외부 고속 통신에서 Noncoherent 수신기 기반의 안테나 선택 기법)

  • Park, Jong-Seok;Hwang, Jae-Ho;Jang, Sung-Jeen;Kim, Jae-Moung;Lee, Hyung-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.88-97
    • /
    • 2009
  • As the development of wireless techniques, transmission technology of body area network plays an important role in realizing a welfare society by combining IT and BT when applying to vehicles. Off-body WBAN (Wireless Body Area Network) systems for video data transmission require low battery consumption and high data rate. To satisfy the requirement, UWB has been considered as a promising candidate for high rate WBAN. This paper introduces an antenna selection technique for ultra-wideband based off-body WBAN system with low complexity. In this paper, we propose an antenna selection scheme using non-coherent receiver for off-body high data rate WBAN system. The proposed receiver antenna selection method takes advantage of the characteristic of BPPM (Binary Pulse Position Modulation). With the property of BPPM, this scheme calculates the approximate SNR of the received signal with non-coherent receiver.

  • PDF

Global Healthcare Information System

  • Singh, Dhananjay;Lee, Hoon-Jae;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.365-368
    • /
    • 2008
  • This paper presents a new concept of IP-based wireless sensor networks and also introduces a routing protocol that is based on clustering for global healthcare information system. Low-power wireless personal area networks (LoWPANs) conform the standard by IEEE 802.15.4-2003 to IPv6 that makes 6lowpan. It characterized by low bit rate, low power, and low cost as well as protocol for wireless connections. The 6lowpan node with biomedical sensor devices fixed on the patient body area network that should be connected to the gateway in personal area network. Each 6lowpan nodes have IP-addresses that would be directly connected to the internet. With the help of IP-address service provider can recognize or analysis patient biomedical data from anywhere on globe by internet service provider equipments such as cell phone, PDA, note book. The system has been evaluated by technical verification, clinical test, user survey and current status of patient. We used NS-2.33 simulator for our prototype and also simulate the routing protocols. The result shows the performance of biomedical data packets in multi-hope routing as well as represents the topology of the networks.

  • PDF

IEEE 802.15.6 중심의 WBAN 국내외 표준화 동향

  • Lee, Seong-Hyeop;Yun, Yang-Mun;Kim, Do-Hyeon
    • Information and Communications Magazine
    • /
    • v.25 no.2
    • /
    • pp.11-17
    • /
    • 2008
  • 최근 IT-BT-NT 융합의 대표적인 기술이며, wearable computing이나 healthcare와 같은 대표적인 응용분야를 포함하는 WBAN (Wireless Body Area Network)에 대해 IEEE 802.15.6 TG BAN을 중심으로 물리계층, 데이터 링크 계층, 네트워크 계층 및 응용 계층 등에 대해서 표준화가 진행되고 있다. IEEE 802.15 WG는 2006년 11월에 Wireless Medical BAN IG를 SG로 승인하였으며, 2007년 11월, 제51차 IEEE 802 WPAN 본회의에서 TG BAN으로 최종 승격하였다. 따라서, 본고에서는 IEEE 802.15.6 TG BAN을 중심으로 WBAN 국내외 표준화 활동에 대해 고찰하고자 한다.

The Comparison of Performance Hierarchical Routing Protocols in Wide Area Sensor Field

  • Park, SeaYoung;Jung, KyeDong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2016
  • Studies have been made for the wireless sensor network protocols by a number of researchers to date. In particular, the studies as to the hierarchical protocol LEACH algorithm was concentrated. Various studies have been derived for the performance of the protocol is based on the LEACH protocol have been made. Improved algorithms have been proposed continuously. On the other hand, The performance comparison and evaluation of the improved algorithm is insufficient. Therefore, we compared the performance for the ML-LEACH (Multi Hop-Layered) and DL-LEACH (Dual Hop-Layered) been derived mainly LEACH. scalability, energy consumption, CH elected, network lifetime were selected as a Performance evaluation items.

A Study for Co-channel Interference Mitigation in WBAN System (WBAN 환경에서 Co-channel 간섭 제거를 위한 연구)

  • Choi, W.S.;Kim, J.G.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, we analyze that co-channel interference mitigation algorithms MMSE (Minimum Mean Square Error), OC (Optimal Combining), ML (Maximum Likelihood) using 2.4Ghz in WBAN (Wireless Body Area Network) system. Also analyze that scenario and channel model by IEEE 802.15.6. ML gives the best performance for all simulation. ML and OC have high complexity than MMSE complexity, because these algorithms should be known channel information of interference users. So these algorithms are difficult to apply to WBAN. Therefore we will study the interference mitigation algorithm that should be accomplished trade-off of between efficiency and complexity.

A QoS-aware Adaptive Coloring Scheduling Algorithm for Co-located WBANs

  • Wang, Jingxian;Sun, Yongmei;Luo, Shuyun;Ji, Yuefeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5800-5818
    • /
    • 2018
  • Interference may occur when several co-located wireless body area networks (WBANs) share the same channel simultaneously, which is compressed by resource scheduling generally. In this paper, a QoS-aware Adaptive Coloring (QAC) scheduling algorithm is proposed, which contains two components: interference sets determination and time slots assignment. The highlight of QAC is to determine the interference graph based on the relay scheme and adapted to the network QoS by multi-coloring approach. However, the frequent resource assignment brings in extra energy consumption and packet loss. Thus we come up with a launch condition for the QAC scheduling algorithm, that is if the interference duration is longer than a threshold predetermined, time slots rescheduling is activated. Furthermore, based on the relative distance and moving speed between WBANs, a prediction model for interference duration is proposed. The simulation results show that compared with the state-of-the-art approaches, the QAC scheduling algorithm has better performance in terms of network capacity, average delay and resource utility.

Offset Phase Rotation Shift Keying and Phase Silence Rotation Shift Keying Modulation for Medical In-Body WBAN Systems (의료용 In-Body WBAN 시스템을 위한 Offset Phase Rotation Shift Keying 및 Phase Silence Sotation Shift Keying 변조 방식)

  • Choi, Il-Muk;Won, Kyung-Hoon;Kim, Ki-Yun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.290-297
    • /
    • 2012
  • In this paper, we proposed new modulation schemes, Offset Phase Rotation Shift Keying (OPRSK) and Phase Shift Rotation Shift Keying (PSRSK), for medical in-body wireless body area network (WBAN) systems. In IEEE, the WBAN system is assigned as 802.15. Task Group (TG) 6, and the related standardization is being progressed. Recently, in this Group, Phase Silence Shift Keying (PSSK), Phase Silence Position Keying (PSPK) and Phase Rotation Shift Keying (PRSK), which can obtain higher power efficiency, are proposed as new modulation schemes for low-power operation of WBAN system. However, they have a disadvantage for non-linear amplifier distortion. Therefore, in this paper, we proposed OPRSK and PSRSK, which are robust to non-linear amplification, by employing a phase offset in constellation and a power distribution in symbol duration, and verified that the proposed methods have good perfomance and stable operation through performance evaluation.